如图,抛物线 与 轴相交于 , 两点,与 轴相交于点 , , ,直线 是抛物线的对称轴,在直线 右侧的抛物线上有一动点 ,连接 , , , .
(1)求抛物线的函数表达式;
(2)若点 在 轴的下方,当 的面积是 时,求 的面积;
(3)在(2)的条件下,点 是 轴上一点,点 是抛物线上一动点,是否存在点 ,使得以点 , , , 为顶点,以 为一边的四边形是平行四边形,若存在,求出点 的坐标;若不存在,请说明理由.
已知抛物线 与 轴交于 , 两点(点 在点 的左侧)与 轴交于点 ,点 在抛物线上, 是该抛物线对称轴上一动点,当 的值最小时, 的面积为 .
如图,抛物线 与直线 相交于点 和点 .
(1)求 和 的值;
(2)求点 的坐标,并结合图象写出不等式 的解集;
(3)点 是直线 上的一个动点,将点 向左平移3个单位长度得到点 ,若线段 与抛物线只有一个公共点,直接写出点 的横坐标 的取值范围.
设 为坐标原点,点 、 为抛物线 上的两个动点,且 .连接点 、 ,过 作 于点 ,则点 到 轴距离的最大值
A. |
|
B. |
|
C. |
|
D. |
1 |
已知抛物线 与 轴交于 , 两点(点 在点 的左侧)与 轴交于点 ,点 在抛物线上, 是该抛物线对称轴上一动点,当 的值最小时, 的面积为 .
直线 过点 且与 轴垂直,若二次函数 (其中 是自变量)的图象与直线 有两个不同的交点,且其对称轴在 轴右侧,则 的取值范围是
A. |
|
B. |
|
C. |
|
D. |
|
如图(1),在平面直角坐标系中,抛物线 与y轴交于点A,与x轴交于点 ,且经过点B(8,4),连接AB,BO,作 于点M,将 沿y轴翻折,点M的对应点为点N.解答下列问题:
(1)抛物线的解析式为 ,顶点坐标为 ;
(2)判断点N是否在直线AC上,并说明理由;
(3)如图(2),将图(1)中 沿着OB平移后,得到 .若DE边在线段OB上,点F在抛物线上,连接AF,求四边形 的面积.
如图,已知抛物线 与 轴相交于 , 两点,与 轴相交于点 ,对称轴是直线 ,连接 .
(1)求该抛物线的表达式;
(2)若过点 的直线 与抛物线相交于另一点 ,当 时,求直线 的表达式;
(3)在(2)的条件下,当点 在 轴下方时,连接 ,此时在 轴左侧的抛物线上存在点 ,使 .请直接出所有符合条件的点 的坐标.
甲秀楼是贵阳市一张靓丽的名片.如图①,甲秀楼的桥拱截面 可视为抛物线的一部分,在某一时刻,桥拱内的水面宽 ,桥拱顶点 到水面的距离是 .
(1)按如图②所示建立平面直角坐标系,求桥拱部分抛物线的函数表达式;
(2)一只宽为 的打捞船径直向桥驶来,当船驶到桥拱下方且距 点 时,桥下水位刚好在 处,有一名身高 的工人站立在打捞船正中间清理垃圾,他的头顶是否会触碰到桥拱,请说明理由(假设船底与水面齐平).
(3)如图③,桥拱所在的函数图象是抛物线 ,该抛物线在 轴下方部分与桥拱 在平静水面中的倒影组成一个新函数图象.将新函数图象向右平移 个单位长度,平移后的函数图象在 时, 的值随 值的增大而减小,结合函数图象,求 的取值范围.
如图,抛物线 过 、 ,直线 交抛物线于点 ,点 的横坐标为 ,点 是线段 上的动点,过点 的直线垂直于 轴,交抛物线于点 .
(1)求直线 及抛物线的解析式;
(2)求线段 的长度 与 的关系式, 为何值时, 最长?
(3)在平面内是否存在整点(横、纵坐标都为整数) ,使得 、 、 、 为顶点的四边形是平行四边形?若存在,直接写出点 的坐标;若不存在,说明理由.
如图,在平面直角坐标系 中,已知 , 两点的坐标分别为 , , 是线段 上一点(与 , 点不重合),抛物线 经过点 , ,顶点为 ,抛物线 经过点 , ,顶点为 , , 的延长线相交于点 .
(1)若 , ,求抛物线 , 的解析式;
(2)若 , ,求 的值;
(3)是否存在这样的实数 ,无论 取何值,直线 与 都不可能互相垂直?若存在,请直接写出 的两个不同的值;若不存在,请说明理由.
如图1,在平面直角坐标系中,点 的坐标是 ,在 轴上任取一点 ,连接 ,分别以点 和点 为圆心,大于 的长为半径作弧,两弧相交于 , 两点,作直线 ,过点 作 轴的垂线 交直线 于点 .根据以上操作,完成下列问题.
探究:
(1)线段 与 的数量关系为 ,其理由为: .
(2)在 轴上多次改变点 的位置,按上述作图方法得到相应点 的坐标,并完成下列表格:
的坐标 |
|
|
|
|
|
|
的坐标 |
|
|
|
|
|
|
猜想:
(3)请根据上述表格中 点的坐标,把这些点用平滑的曲线在图2中连接起来;观察画出的曲线 ,猜想曲线 的形状是 .
验证:
(4)设点 的坐标是 ,根据图1中线段 与 的关系,求出 关于 的函数解析式.
应用:
(5)如图3,点 , ,点 为曲线 上任意一点,且 ,求点 的纵坐标 的取值范围.
如图,二次函数 的图象过点 , ,交y轴于点 .直线BO与抛物线相交于另一点D,连接 ,点E是线段AB上的一动点,过点E作 交AD于点F.
(1)求二次函数 的表达式;
(2)判断 的形状,并说明理由;
(3)在点E的运动过程中,直线 上存在一点G,使得四边形AFGE为矩形,请判断此时 的数量关系,并求出点E的坐标;
(4)点H是抛物线的顶点,在(3)的条件下,点P是平面内使得 的点,在抛物线的对称轴上,是否存在点Q,使得 是以 为直角的等腰直角三角形,若存在,直接写出符合条件的所有点Q的坐标;若不存在,请说明理由.
已知二次项系数等于1的一个二次函数,其图象与 轴交于两点 , ,且过 , 两点 , 是实数),若 ,则 的取值范围是
A. |
|
B. |
|
C. |
|
D. |
|