已知抛物线 与 轴交于点 、 (点 在点 的左侧),与 轴交于点 .
(1)求点 、 的坐标;
(2)设点 与点 关于该抛物线的对称轴对称.在 轴上是否存在点 ,使 与 相似,且 与 是对应边?若存在,求出点 的坐标;若不存在,请说明理由.
如图,在平面直角坐标系中,抛物线 经过 , .直线 交 轴于点 , 是直线 下方抛物线上的一个动点.过点 作 ,垂足为 , 轴,交 于点 .
(1)求抛物线的函数表达式;
(2)当 的周长取得最大值时,求点 的坐标和 周长的最大值;
(3)把抛物线 平移,使得新抛物线的顶点为(2)中求得的点 . 是新抛物线上一点, 是新抛物线对称轴上一点,直接写出所有使得以点 , , , 为顶点的四边形是平行四边形的点 的坐标,并把求其中一个点 的坐标的过程写出来.
已知二次项系数等于1的一个二次函数,其图象与 轴交于两点 , ,且过 , 两点 , 是实数),若 ,则 的取值范围是
A. |
|
B. |
|
C. |
|
D. |
|
如图,已知抛物线 与 轴相交于 , 两点,与 轴相交于点 ,对称轴是直线 ,连接 .
(1)求该抛物线的表达式;
(2)若过点 的直线 与抛物线相交于另一点 ,当 时,求直线 的表达式;
(3)在(2)的条件下,当点 在 轴下方时,连接 ,此时在 轴左侧的抛物线上存在点 ,使 .请直接出所有符合条件的点 的坐标.
如图,已知抛物线 与直线 交于 , 两点,交 轴于 、 两点,连接 、 ,已知 , .
(1)求此抛物线的解析式;
(2)在抛物线对称轴 上找一点 ,使 的值最大,并求出这个最大值;
(3)点 为 轴右侧抛物线上一动点,连接 ,过点 作 交 轴于点 ,问:是否存在点 ,使得以 , , 为顶点的三角形与 相似?若存在,请求出所有符合条件的点 的坐标;若不存在,请说明理由.
如图,在平面直角坐标系中,抛物线 交 轴于 、 两点,交 轴于点 , , ,直线 过点 ,交 轴于点 ,交抛物线于点 ,且满足 .
(1)求抛物线的解析式;
(2)动点 从点 出发,沿 轴正方向以每秒2个单位长度的速度向点 运动,动点 从点 出发,沿射线 以每秒1个单位长度的速度向点 运动,当点 运动到点 时,点 也停止运动,设运动时间为 秒.
①在 、 的运动过程中,是否存在某一时刻 ,使得 与 相似,若存在,求出 的值;若不存在,请说明理由.
②在 、 的运动过程中,是否存在某一时刻 ,使得 与 的面积之和最大?若存在,求出 的值;若不存在,请说明理由.
如图,已知二次函数 的图象与 轴分别交于 , 两点,与 轴交于点
(1)求此二次函数解析式;
(2)点 为抛物线的顶点,试判断 的形状,并说明理由;
(3)将直线 向上平移 个单位,平移后的直线与抛物线交于 , 两点(点 在 轴的右侧),当 为直角三角形时,求 的值.
在平面直角坐标系中,抛物线 与 轴交于点 、 ,交 轴于点 ,点 为抛物线的顶点,对称轴与 轴交于点 .
(1)求抛物线的解析式;
(2)如图1,连接 ,点 是线段 上方抛物线上一动点, 于点 ,过点 作 轴于点 ,交 于点 .点 是 轴上一动点,当 取最大值时:
①求 的最小值;
②如图2, 点为 轴上一动点,请直接写出 的最小值.
如图,已知抛物线交 轴于 、 两点,交 轴于 点, 点坐标为 , , ,点 为抛物线的顶点.
(1)求抛物线的解析式;
(2) 为坐标平面内一点,以 、 、 、 为顶点的四边形是平行四边形,求 点坐标;
(3)若抛物线上有且仅有三个点 、 、 使得△ 、△ 、△ 的面积均为定值 ,求出定值 及 、 、 这三个点的坐标.
如图,对称轴为直线 的抛物线 与 轴交于 , 、 , 两点,与 轴交于 点,且 .
(1)求抛物线的解析式;
(2)抛物线顶点为 ,直线 交 轴于 点;
①设点 为线段 上一点(点 不与 、 两点重合),过点 作 轴的垂线与抛物线交于点 ,求 面积的最大值;
②在线段 上是否存在点 ,使得 ?若存在,求出点 的坐标;若不存在,请说明理由.
已知:如图,一次函数 的图象经过点 , ,与 轴交于点 .点 在线段 上,且 ,过点 作 轴的垂线,垂足为点 .若 .
(1)求这个一次函数的表达式;
(2)已知一开口向下、以直线 为对称轴的抛物线经过点 ,它的顶点为 ,若过点 且垂直于 的直线与 轴的交点为 , ,求这条抛物线的函数表达式.
综合与探究
如图,抛物线 与 轴交于 , 两点(点 在点 的左侧),与 轴交于点 .直线 与抛物线交于 , 两点,与 轴交于点 ,点 的坐标为 .
(1)请直接写出 , 两点的坐标及直线 的函数表达式;
(2)若点 是抛物线上的点,点 的横坐标为 ,过点 作 轴,垂足为 . 与直线 交于点 ,当点 是线段 的三等分点时,求点 的坐标;
(3)若点 是 轴上的点,且 ,求点 的坐标.
抛物线 与 轴交于 、 两点,与 轴交于点 ,点 的坐标为 ,点 的坐标为 .点 为抛物线 上的一个动点.过点 作 轴于点 ,交直线 于点 .
(1)求 、 的值;
(2)设点 在抛物线 的对称轴上,当 的周长最小时,直接写出点 的坐标;
(3)在第一象限,是否存在点 ,使点 到直线 的距离是点 到直线 的距离的5倍?若存在,求出点 所有的坐标;若不存在,请说明理由.
如图,抛物线 与 轴交于 、 两点,与 轴交于点 ,对称轴 与 轴交于点 ,直线 ,点 是直线 上方抛物线上一动点,过点 作 ,垂足为 ,交 于点 ,连接 、 、 、 .
(1)抛物线的解析式为 ;
(2)当四边形 面积最大时,求点 的坐标;
(3)在(2)的条件下,连接 ,点 是 轴上一动点,在抛物线上是否存在点 ,使得以 、 、 、 为顶点,以 为一边的四边形是平行四边形.若存在,请直接写出点 的坐标;若不存在,说明理由.