初中数学

已知二次项系数等于1的一个二次函数,其图象与 x 轴交于两点 ( m , 0 ) ( n , 0 ) ,且过 A ( 0 , b ) B ( 3 , a ) 两点 ( b a 是实数),若 0 < m < n < 2 ,则 ab 的取值范围是 (    )

A.

0 < ab < 41 8

B.

0 < ab < 19 8

C.

0 < ab < 81 16

D.

0 < ab < 49 16

来源:2021年内蒙古呼和浩特市中考数学试卷
  • 更新:2021-08-19
  • 题型:未知
  • 难度:未知

如图,已知抛物线 y = a x 2 + bx + c x 轴相交于 A ( - 3 , 0 ) B 两点,与 y 轴相交于点 C ( 0 , 2 ) ,对称轴是直线 x = - 1 ,连接 AC

(1)求该抛物线的表达式;

(2)若过点 B 的直线 l 与抛物线相交于另一点 D ,当 ABD = BAC 时,求直线 l 的表达式;

(3)在(2)的条件下,当点 D x 轴下方时,连接 AD ,此时在 y 轴左侧的抛物线上存在点 P ,使 S ΔBDP = 3 2 S ΔABD .请直接出所有符合条件的点 P 的坐标.

来源:2021年广西贵港市中考数学试卷
  • 更新:2021-07-22
  • 题型:未知
  • 难度:未知

综合与探究

如图,抛物线 y = 1 4 x 2 - x - 3 x 轴交于 A B 两点(点 A 在点 B 的左侧),与 y 轴交于点 C .直线 l 与抛物线交于 A D 两点,与 y 轴交于点 E ,点 D 的坐标为 ( 4 , - 3 )

(1)请直接写出 A B 两点的坐标及直线 l 的函数表达式;

(2)若点 P 是抛物线上的点,点 P 的横坐标为 m ( m 0 ) ,过点 P PM x 轴,垂足为 M PM 与直线 l 交于点 N ,当点 N 是线段 PM 的三等分点时,求点 P 的坐标;

(3)若点 Q y 轴上的点,且 ADQ = 45 ° ,求点 Q 的坐标.

来源:2020年山西省中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a x 2 + bx 经过 ΔOAB 的三个顶点,其中点 A ( 1 , 3 ) ,点 B ( 3 , 3 ) O 为坐标原点.

(1)求这条抛物线所对应的函数表达式;

(2)若 P ( 4 , m ) Q ( t , n ) 为该抛物线上的两点,且 n < m ,求 t 的取值范围;

(3)若 C 为线段 AB 上的一个动点,当点 A ,点 B 到直线 OC 的距离之和最大时,求 BOC 的大小及点 C 的坐标.

来源:2018年山东省淄博市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

已知关于 x 的二次函数 y 1 = x 2 + bx + c (实数 b c 为常数).

(1)若二次函数的图象经过点 ( 0 , 4 ) ,对称轴为 x = 1 ,求此二次函数的表达式;

(2)若 b 2 - c = 0 ,当 b - 3 x b 时,二次函数的最小值为21,求 b 的值;

(3)记关于 x 的二次函数 y 2 = 2 x 2 + x + m ,若在(1)的条件下,当 0 x 1 时,总有 y 2 y 1 ,求实数 m 的最小值.

来源:2021年湖南省永州市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

如图,在等腰直角三角形 ABC 中, BAC = 90 ° ,点 A x 轴上,点 B y 轴上,点 C ( 3 , 1 ) ,二次函数 y = 1 3 x 2 + bx 3 2 的图象经过点 C

(1)求二次函数的解析式,并把解析式化成 y = a ( x h ) 2 + k 的形式;

(2)把 ΔABC 沿 x 轴正方向平移,当点 B 落在抛物线上时,求 ΔABC 扫过区域的面积;

(3)在抛物线上是否存在异于点 C 的点 P ,使 ΔABP 是以 AB 为直角边的等腰直角三角形?如果存在,请求出所有符合条件的点 P 的坐标;如果不存在,请说明理由.

来源:2018年四川省德阳市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,抛物线经过原点 O ( 0 , 0 ) ,点 A ( 1 , 1 ) ,点 B ( 7 2 , 0 )

(1)求抛物线解析式;

(2)连接 OA ,过点 A AC OA 交抛物线于 C ,连接 OC ,求 ΔAOC 的面积;

(3)点 M y 轴右侧抛物线上一动点,连接 OM ,过点 M MN OM x 轴于点 N .问:是否存在点 M ,使以点 O M N 为顶点的三角形与(2)中的 ΔAOC 相似,若存在,求出点 M 的坐标;若不存在,说明理由.

来源:2018年四川省达州市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图1,抛物线 y = - x 2 + bx + c x 轴交于 A B 两点,与 y 轴交于点 C ,已知点 B 坐标为 ( 3 , 0 ) ,点 C 坐标为 ( 0 , 3 )

(1)求抛物线的表达式;

(2)点 P 为直线 BC 上方抛物线上的一个动点,当 ΔPBC 的面积最大时,求点 P 的坐标;

(3)如图2,点 M 为该抛物线的顶点,直线 MD x 轴于点 D ,在直线 MD 上是否存在点 N ,使点 N 到直线 MC 的距离等于点 N 到点 A 的距离?若存在,求出点 N 的坐标;若不存在,请说明理由.

来源:2020年四川省眉山市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

已知,抛物线 y = a x 2 + bx + 3 ( a < 0 ) x 轴交于 A ( 3 , 0 ) B 两点,与 y 轴交于点 C ,抛物线的对称轴是直线 x = 1 D 为抛物线的顶点,点 E y C 点的上方,且 CE = 1 2

(1)求抛物线的解析式及顶点 D 的坐标;

(2)求证:直线 DE ΔACD 外接圆的切线;

(3)在直线 AC 上方的抛物线上找一点 P ,使 S ΔACP = 1 2 S ΔACD ,求点 P 的坐标;

(4)在坐标轴上找一点 M ,使以点 B C M 为顶点的三角形与 ΔACD 相似,直接写出点 M 的坐标.

来源:2017年湖北省鄂州市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

已知抛物线的顶点为 ( 2 , 4 ) 并经过点 ( 2 , 4 ) ,点 A 在抛物线的对称轴上并且纵坐标为 3 2 ,抛物线交 y 轴于点 N .如图1.

(1)求抛物线的解析式;

(2)点 P 为抛物线对称轴上的一点, ΔANP 为等腰三角形,求点 P 的坐标;

(3)如图2,点 B 为直线 y = 2 上的一个动点,过点 B 的直线 l AB 垂直

①求证:直线 l 与抛物线总有两个交点;

②设直线 l 与抛物线交于点 C D (点 C 在左侧),分别过点 C D 作直线 y = 2 的垂线,垂足分别为 E F .求 EF 的长.

来源:2018年四川省广元市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,已知抛物线 y = a x 2 + 3 2 x + 4 的对称轴是直线 x = 3 ,且与 x 轴相交于 A B 两点 ( B 点在 A 点右侧)与 y 轴交于 C 点.

(1)求抛物线的解析式和 A B 两点的坐标;

(2)若点 P 是抛物线上 B C 两点之间的一个动点(不与 B C 重合),则是否存在一点 P ,使 ΔPBC 的面积最大.若存在,请求出 ΔPBC 的最大面积;若不存在,试说明理由;

(3)若 M 是抛物线上任意一点,过点 M y 轴的平行线,交直线 BC 于点 N ,当 MN = 3 时,求 M 点的坐标.

来源:2018年四川省遂宁市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系 xOy 中,已知 A B 两点的坐标分别为 ( 4 , 0 ) ( 4 , 0 ) C ( m , 0 ) 是线段 AB 上一点(与 A B 点不重合),抛物线 L 1 : y = a x 2 + b 1 x + c 1 ( a < 0 ) 经过点 A C ,顶点为 D ,抛物线 L 2 : y = a x 2 + b 2 x + c 2 ( a < 0 ) 经过点 C B ,顶点为 E AD BE 的延长线相交于点 F

(1)若 a = 1 2 m = 1 ,求抛物线 L 1 L 2 的解析式;

(2)若 a = 1 AF BF ,求 m 的值;

(3)是否存在这样的实数 a ( a < 0 ) ,无论 m 取何值,直线 AF BF 都不可能互相垂直?若存在,请直接写出 a 的两个不同的值;若不存在,请说明理由.

来源:2017年浙江省湖州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

小贤与小杰在探究某类二次函数问题时,经历了如下过程:

求解体验:

(1)已知抛物线 y = x 2 + bx 3 经过点 ( 1 , 0 ) ,则 b =   ,顶点坐标为  ,该抛物线关于点 ( 0 , 1 ) 成中心对称的抛物线表达式是  

抽象感悟:

我们定义:对于抛物线 y = a x 2 + bx + c ( a 0 ) ,以 y 轴上的点 M ( 0 , m ) 为中心,作该抛物线关于点 M 中心对称的抛物线 y ' ,则我们又称抛物线 y ' 为抛物线 y 的“衍生抛物线”,点 M 为“衍生中心”.

(2)已知抛物线 y = x 2 2 x + 5 关于点 ( 0 , m ) 的衍生抛物线为 y ' ,若这两条抛物线有交点,求 m 的取值范围.

问题解决:

(3)已知抛物线 y = a x 2 + 2 ax b ( a 0 )

①若抛物线 y 的衍生抛物线为 y ' = b x 2 2 bx + a 2 ( b 0 ) ,两抛物线有两个交点,且恰好是它们的顶点,求 a b 的值及衍生中心的坐标;

②若抛物线 y 关于点 ( 0 , k + 1 2 ) 的衍生抛物线为 y 1 ,其顶点为 A 1 ;关于点 ( 0 , k + 2 2 ) 的衍生抛物线为 y 2 ,其顶点为 A 2 ;关于点 ( 0 , k + n 2 ) 的衍生抛物线为 y n ,其顶点为 A n ( n 为正整数).求 A n A n + 1 的长(用含 n 的式子表示).

来源:2018年江西省中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,抛物线 y = x 2 + bx + c x 轴交于 ( 3 , 0 ) B ( 1 , 0 ) 两点,与 y 轴交于点 C ,对称轴 l x 轴交于点 F ,直线 m / / AC ,点 E 是直线 AC 上方抛物线上一动点,过点 E EH m ,垂足为 H ,交 AC 于点 G ,连接 AE EC CH AH

(1)抛物线的解析式为   

(2)当四边形 AHCE 面积最大时,求点 E 的坐标;

(3)在(2)的条件下,连接 EF ,点 P x 轴上一动点,在抛物线上是否存在点 Q ,使得以 F E P Q 为顶点,以 EF 为一边的四边形是平行四边形.若存在,请直接写出点 Q 的坐标;若不存在,说明理由.

来源:2021年内蒙古赤峰市中考数学试卷
  • 更新:2021-08-19
  • 题型:未知
  • 难度:未知

O 为坐标原点,点 A B 为抛物线 y = x 2 上的两个动点,且 OA OB .连接点 A B ,过 O OC AB 于点 C ,则点 C y 轴距离的最大值 (    )

A.

1 2

B.

2 2

C.

3 2

D.

1

来源:2021年广东省中考数学试卷
  • 更新:2021-07-22
  • 题型:未知
  • 难度:未知

初中数学二次函数的性质试题