如图,已知抛物线交 x 轴于 A 、 B 两点,交 y 轴于 C 点, A 点坐标为 ( - 1 , 0 ) , OC = 2 , OB = 3 ,点 D 为抛物线的顶点.
(1)求抛物线的解析式;
(2) P 为坐标平面内一点,以 B 、 C 、 D 、 P 为顶点的四边形是平行四边形,求 P 点坐标;
(3)若抛物线上有且仅有三个点 M 1 、 M 2 、 M 3 使得△ M 1 BC 、△ M 2 BC 、△ M 3 BC 的面积均为定值 S ,求出定值 S 及 M 1 、 M 2 、 M 3 这三个点的坐标.
“创建国家森林城市,打造秀美、和谐祁阳.”某乡镇组织300名干部、群众参加义务植树活动,下表是随机抽出的50名干部、群众义务植树的统计,根据图中的数据回答下列问题: 植树棵树 3 4 5 6 8 人 数 10 15 12 7 6 (1)这50个人平均每人植树棵; (2)植树棵数的中位数是; (3)植树棵数的众数是; (4)估计该乡镇本次活动共植树棵.
如图,已知Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线平移至△FEG,DE、FG相交于点H.(1)判断线段DE、FG的位置关系,并说明理由;(2)连结CG,求证:四边形CBEG是正方形.
计算:,并选一个合适的x代入求值.
小文家与学校相距1000米.某天小文上学时忘了带一本书,走了一段时间才想起,于是返回家拿书,然后加快速度赶到学校.下图是小文与家的距离y(米)关于时间x(分钟)的函数图象.请你根据图象中给出的信息,解答下列问题:(1)小文走了多远才返回家拿书?(2)求线段AB所在直线的函数解析式;(3)当x=8分钟时,求小文与家的距离.
一个零件的形状如图所示,按规定这个零件中∠A和∠DBC都应为直角,工人师傅量出了这个零件各边尺寸,那么这个零件符合要求吗?求出四边形ABCD的面积.