如图,在平面直角坐标系中,抛物线 经过点 和 .
(1)求抛物线 的对称轴.
(2)当 时,将抛物线 向左平移2个单位,再向下平移1个单位,得到抛物线 .
①求抛物线 的解析式.
②设抛物线 与 轴交于 , 两点(点 在点 的右侧),与 轴交于点 ,连接 .点 为第一象限内抛物线 上一动点,过点 作 于点 .设点 的横坐标为 .是否存在点 ,使得以点 , , 为顶点的三角形与 相似,若存在,求出 的值;若不存在,请说明理由.
在平面直角坐标系中,抛物线 的顶点为 .
(1)求顶点 的坐标(用含有字母 的代数式表示);
(2)若点 , 在抛物线上,且 ,则 的取值范围是 ;(直接写出结果即可)
(3)当 时,函数 的最小值等于6,求 的值.
如图,已知抛物线 经过点 , .
(1)求 , 的值;
(2)连结 ,交抛物线 的对称轴于点 .
①求点 的坐标;
②将抛物线 向左平移 个单位得到抛物线 .过点 作 轴,交抛物线 于点 . 是抛物线 上一点,横坐标为 ,过点 作 轴,交抛物线 于点 ,点 在抛物线 对称轴的右侧.若 ,求 的值.
二次函数 的图象经过点 , ,与 轴交于点 ,点 为第二象限内抛物线上一点,连接 、 ,交于点 ,过点 作 轴于点 .
(1)求二次函数的表达式;
(2)连接 ,当 时,求直线 的表达式;
(3)请判断: 是否有最大值,如有请求出有最大值时点 的坐标,如没有请说明理由.
如图,在平面直角坐标系中,直线 与 轴交于点 ,与 轴交于点 ,抛物线 经过坐标原点和点 ,顶点为点 .
(1)求抛物线的关系式及点 的坐标;
(2)点 是直线 下方的抛物线上一动点,连接 , ,当 的面积等于 时,求 点的坐标;
(3)将直线 向下平移,得到过点 的直线 ,且与 轴负半轴交于点 ,取点 ,连接 ,求证: .
已知二次函数 .
(1)求二次函数图象的顶点坐标;
(2)当 时,函数的最大值和最小值分别为多少?
(3)当 时,函数的最大值为 ,最小值为 ,若 ,求 的值.
如图,已知抛物线 的对称轴在 轴右侧,抛物线与 轴交于点 和点 ,与 轴的负半轴交于点 ,且 ,则下列结论:① ;② ;③ ;④当 时,在 轴下方的抛物线上一定存在关于对称轴对称的两点 , (点 在点 左边),使得 ,其中正确的有
A. |
1个 |
B. |
2个 |
C. |
3个 |
D. |
4个 |
如图,在平面直角坐标系 中,平行四边形 的 边与 轴交于 点, 是 的中点, 、 、 的坐标分别为 , , .
(1)求过 、 、 三点的抛物线的解析式;
(2)试判断抛物线的顶点是否在直线 上;
(3)设过 与 平行的直线交 轴于 , 是线段 之间的动点,射线 与抛物线交于另一点 ,当 的面积最大时,求 的坐标.
已知抛物线 .
(1)求抛物线的对称轴;
(2)把抛物线沿 轴向下平移 个单位,若抛物线的顶点落在 轴上,求 的值;
(3)设点 , 在抛物线上,若 ,求 的取值范围.
如图,抛物线 与 轴交于 、 两点,与 轴交于点 ,直线 过 、 两点,连接 .
(1)求抛物线的解析式;
(2)求证: ;
(3)点 是抛物线上的一点,点 为抛物线上位于直线 上方的一点,过点 作 轴交直线 于点 ,点 为抛物线对称轴上一动点,当线段 的长度最大时,求 的最小值.
已知抛物线 与 轴交于 , 两点(点 在点 的左侧)与 轴交于点 ,点 在抛物线上, 是该抛物线对称轴上一动点,当 的值最小时, 的面积为 .
如图,已知抛物线 与 轴相交于 , 两点,与 轴相交于点 ,对称轴是直线 ,连接 .
(1)求该抛物线的表达式;
(2)若过点 的直线 与抛物线相交于另一点 ,当 时,求直线 的表达式;
(3)在(2)的条件下,当点 在 轴下方时,连接 ,此时在 轴左侧的抛物线上存在点 ,使 .请直接出所有符合条件的点 的坐标.
直线 过点 且与 轴垂直,若二次函数 (其中 是自变量)的图象与直线 有两个不同的交点,且其对称轴在 轴右侧,则 的取值范围是
A. |
|
B. |
|
C. |
|
D. |
|
已知抛物线 与 轴交于 , 两点(点 在点 的左侧)与 轴交于点 ,点 在抛物线上, 是该抛物线对称轴上一动点,当 的值最小时, 的面积为 .