如图,在平面直角坐标系中,直线 y = − 1 2 x + 3 与 x 轴交于点 A ,与 y 轴交于点 B ,抛物线 y = 1 3 x 2 + bx + c 经过坐标原点和点 A ,顶点为点 M .
(1)求抛物线的关系式及点 M 的坐标;
(2)点 E 是直线 AB 下方的抛物线上一动点,连接 EB , EA ,当 ΔEAB 的面积等于 25 2 时,求 E 点的坐标;
(3)将直线 AB 向下平移,得到过点 M 的直线 y = mx + n ,且与 x 轴负半轴交于点 C ,取点 D ( 2 , 0 ) ,连接 DM ,求证: ∠ ADM − ∠ ACM = 45 ° .
如图,在Rt△ABC中,∠C=90°,AB=10cm,AC:BC=4:3,点P从点A出发沿AB方向向点B运动,速度为1cm/s,同时点Q从点B出发沿B→C→A方向向点A运动,速度为2cm/s,当一个动点到达终点时,另一个动点也随之停止运动. (1)求AC、BC的长; (2)设点P的运动时间为x(秒),△PBQ的面积为y(cm2),当△PBQ存在时,求y与x的函数关系式,并写出自变量x的取值范围; (3)当点Q在CA上运动,使PQ⊥AB时,以点B、P、Q为定点的三角形与△ABC是否相似,请说明理由; (4)当x=5秒时,在直线PQ上是否存在一点M,使△BCM得周长最小,若存在,求出最小周长,若不存在,请说明理由。
如图,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD. (1)求证:CD是⊙O的切线; (2)若⊙O的半径为1,∠CBD=30°,则图中阴影部分的面积; (3)过点B作⊙O的切线交CD的延长线于点E若BC=12,tan∠CDA=,求BE的长.
如图,某校综合实践活动小组的同学欲测量公园内一棵树DE的高度,他们在这棵树的正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°.已知A点的高度AB为3米,台阶AC的坡度为1:,且B、C、E三点在同一条直线上.请根据以上条件求出树DE的高度(测角器的高度忽略不计).
某商场将每件进价为160元的某种商品原来按每件200元出售,一天可售出100件,后来经过市场调查,发现这种商品单价每降低2元,其销量可增加10件. (1)求商场经营该商品原来一天可获利润多少元? (2)设后来该商品每件降价x元,商场一天可获利润y元. ①若商场经营该商品一天要获利润4320元,则每件商品应降价多少元? ②求出y与x之间的函数关系式,当x取何值时,商场获利润最大?并求最大利润值.
如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.已知AB=8,CD=2. (1)求⊙O的半径; (2)求sin∠BCE的值.