如图,在平面直角坐标系中,二次函数 y = x 2 + bx + c 的图象经过点 A ( 0 , - 7 4 ) ,点 B ( 1 , 1 4 ) .
(1)求此二次函数的解析式;
(2)当 - 2 ⩽ x ⩽ 2 时,求二次函数 y = x 2 + bx + c 的最大值和最小值;
(3)点 P 为此函数图象上任意一点,其横坐标为 m ,过点 P 作 PQ / / x 轴,点 Q 的横坐标为 - 2 m + 1 .已知点 P 与点 Q 不重合,且线段 PQ 的长度随 m 的增大而减小.
①求 m 的取值范围;
②当 PQ ⩽ 7 时,直接写出线段 PQ 与二次函数 y = x 2 + bx + c ( - 2 ⩽ x < 1 3 ) 的图象交点个数及对应的 m 的取值范围.
(本题满分14分 ,第(1)小题5分,第(2)小题5分,第(3)小题4分) 如图,已知在等腰 Rt△ABC中,∠C=90°,斜边AB=2,若将△ABC翻折,折痕EF分别交边AC、边BC于点E和点F(点E不与A点重合,点F不与B点重合),且点C落在AB边上,记作点D.过点D作DK⊥AB,交射线AC于点K,设AD=x,y=cot∠CFE, (1)求证:△DEK∽△DFB; (2)求y关于x的函数解析式并写出定义域; (3)联结CD,当=时,求x的值
(本题满分12分, 第(1)小题6分,第(2)小题6分) 如图,在平面直角坐标系内,已知直线与x轴、y轴分别相交于点A和点C,抛物线图像过点A和点C,抛物线与x轴的另一交点是B, (1)求出此抛物线的解析式、对称轴以及B点坐标; (2)若在y轴负半轴上存在点D,能使得以A、C、D为顶点的三角形与△ABC相似,请求出点D的坐标.
(本题满分12分, 第(1)小题4分,第(2)小题4分,第(3)小题4分) 如图,已知等腰梯形ABCD中,AD∥BC,AD=1,BC=3,AB=CD=2,点E在BC边上,AE与BD交于点F,∠BAE=∠DBC, (1)求证:△ABE∽△BCD; (2)求tan∠DBC的值; (3)求线段BF的长.
如图,某人在C处看到远处有一凉亭B,在凉亭B正东方向有一棵大树A,这时此人在C处测得B在北偏西45°方向上,测得A在北偏东35°方向上.又测得A、C之间的距离为100米,求A、B之间的距离.(精确到1米).(参考数据:sin35°≈0.574,cos35°≈0.819,tan35°≈0.700)
如图,已知点E在平行四边形ABCD的边AD上,AE=3ED,延长CE到点F,使得EF=CE,设=,=,试用、分别表示向量和.