如图,已知抛物线 y = a x 2 + bx + 4 ( a ≠ 0 ) 与 x 轴交于点 A ( 1 , 0 ) 和 B ,与 y 轴交于点 C ,对称轴为直线 x = 5 2 .
(1)求抛物线的解析式;
(2)如图1,若点 P 是线段 BC 上的一个动点(不与点 B , C 重合),过点 P 作 y 轴的平行线交抛物线于点 Q ,连接 OQ ,当线段 PQ 长度最大时,判断四边形 OCPQ 的形状并说明理由;
(3)如图2,在(2)的条件下, D 是 OC 的中点,过点 Q 的直线与抛物线交于点 E ,且 ∠ DQE = 2 ∠ ODQ .在 y 轴上是否存在点 F ,得 ΔBEF 为等腰三角形?若存在,求点 F 的坐标;若不存在,请说明理由.
计算:
AB是⊙O的直径,点E是半圆上一动点(点E与点A、B都不重合),点C是BE延长线上的一点,且CD⊥AB,垂足为D,CD与AE交于点H,点H与点A不重合。 (1)求证:△AHD∽△CBD (2)连HB,若CD=AB=2,求HD+HO的值
已知△ABC是边长为4的等边三角形,BC在x轴上,点D为BC的中点,点A在第一象限内,AB与y轴的正半轴相交于点E,点B(-1,0),P是AC上的一个动点(P与点A、C不重合) (1)求点A、E的坐标; (2)若y=过点A、E,求抛物线的解析式。 (3)连结PB、PD,设L为△PBD的周长,当L取最小值时,求点P的坐标及L的最小值,并判断此时点P是否在(2)中所求的抛物线上,请充分说明你的判断理由
某工程,甲工程队单独做40天完成,若乙工程队单独做30天后,甲、乙两工程队再合作20天完成。 (1)求乙工程队单独做需要多少天完成? (2)将工程分两部分,甲做其中一部分用了x天,乙做另一部分用了y天,其中x、y均为正整数,且x<15,y<70,求x、y.
下图是某班学生外出乘车、步行、骑车的人数分布直方图和扇形分布图 (1)求该班有多少名学生? (2)补上步行分布直方图的空缺部分; (3)在扇形统计图中,求骑车人数所占的圆心角度数。 (4)若全年级有500人,估计该年级步行人数