如图,在平面直角坐标系中,抛物线 交 轴于点 ,交 轴正半轴于点 ,与过 点的直线相交于另一点 ,过点 作 轴,垂足为 .
(1)求抛物线的表达式;
(2)点 在线段 上(不与点 、 重合),过 作 轴,交直线 于 ,交抛物线于点 ,连接 ,求 面积的最大值;
(3)若 是 轴正半轴上的一动点,设 的长为 ,是否存在 ,使以点 、 、 、 为顶点的四边形是平行四边形?若存在,求出 的值;若不存在,请说明理由.
如图,已知抛物线 与 轴交于点 ,与 轴交于点 ,点 是线段 上方抛物线上的一个动点.
(1)求这条抛物线的表达式及其顶点坐标;
(2)当点 移动到抛物线的什么位置时,使得 ,求出此时点 的坐标;
(3)当点 从 点出发沿线段 上方的抛物线向终点 移动,在移动中,点 的横坐标以每秒1个单位长度的速度变动;与此同时点 以每秒1个单位长度的速度沿 向终点 移动,点 , 移动到各自终点时停止.当两个动点移动 秒时,求四边形 的面积 关于 的函数表达式,并求 为何值时, 有最大值,最大值是多少?
已知:如图,一次函数 的图象经过点 , ,与 轴交于点 .点 在线段 上,且 ,过点 作 轴的垂线,垂足为点 .若 .
(1)求这个一次函数的表达式;
(2)已知一开口向下、以直线 为对称轴的抛物线经过点 ,它的顶点为 ,若过点 且垂直于 的直线与 轴的交点为 , ,求这条抛物线的函数表达式.
如图,在平面直角坐标系中,矩形 的顶点 和 分别在 轴的正半轴和 轴的正半轴上, , ,抛物线 与 轴相交于点 ,抛物线的对称轴与 轴相交于点 ,与 交于点 .
(1)将矩形 沿 折叠,点 恰好落在边 上的点 处.
①点 的坐标为 、 , 的长是 , 的长是 ;
②求点 的坐标;
③请直接写出抛物线的函数表达式;
(2)将矩形 沿着经过点 的直线折叠,点 恰好落在边 上的点 处,连接 ,折痕与 相交于点 ,点 是线段 上的一个动点(不与点 重合),连接 , ,过点 作 于点 ,交 于点 ,连接 ,点 从点 开始沿线段 向点 运动,至与点 重合时停止, 和 的面积分别表示为 和 ,在点 的运动过程中, (即 与 的积)的值是否发生变化?若变化,请直接写出变化范围;若不变,请直接写出这个值.
温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.
如图,直线 分别与 轴、 轴交于 、 两点,点 在 轴上, ,抛物线 经过 , 两点.
(1)求 、 两点的坐标;
(2)求抛物线的解析式;
(3)点 是直线 上方抛物线上的一点,过点 作 于点 ,作 轴交 于点 ,求 周长的最大值.
如图,直线 、 为常数)分别与 轴、 轴交于点 、 ,抛物线 与 轴交于点 .
(1)求直线 的函数解析式;
(2)若点 是抛物线 上的任意一点,设点 到直线 的距离为 ,求 关于 的函数解析式,并求 取最小值时点 的坐标;
(3)若点 在抛物线 的对称轴上移动,点 在直线 上移动,求 的最小值.
已知二次函数 ,
①当 时,求这个二次函数的对称轴的方程;
②若 ,问: 为何值时,二次函数的图象与 轴相切?
③若二次函数的图象与 轴交于点 , , , ,且 , ,与 轴的正半轴交于点 ,以 为直径的半圆恰好过点 ,二次函数的对称轴 与 轴、直线 、直线 分别交于点 、 、 ,且满足 ,求二次函数的表达式.
如图,在平面直角坐标系中,抛物线 与 轴交于 , 两点,与 轴交于点 ,点 是该抛物线的顶点.
(1)求抛物线的解析式和直线 的解析式;
(2)请在 轴上找一点 ,使 的周长最小,求出点 的坐标;
(3)试探究:在拋物线上是否存在点 ,使以点 , , 为顶点, 为直角边的三角形是直角三角形?若存在,请求出符合条件的点 的坐标;若不存在,请说明理由.
如图,在平面直角坐标系中,抛物线 与 轴交于 , 两点(点 在点 的左侧),与 轴交于点 ,抛物线经过点 和点 ,点 是第一象限抛物线上的一个动点.
(1)求直线 和抛物线的表达式;
(2)在 轴上取点 ,连接 , ,当四边形 的面积是7时,求点 的坐标;
(3)在(2)的条件下,当点 在抛物线对称轴的右侧时,直线 上存在两点 , (点 在点 的上方),且 ,动点 从点 出发,沿 的路线运动到终点 ,当点 的运动路程最短时,请直接写出此时点 的坐标.
如图,抛物线 的对称轴是直线 ,与 轴交于 , 两点,与 轴交于点 ,点 的坐标为 ,点 为抛物线上的一个动点,过点 作 轴于点 ,交直线 于点 .
(1)求抛物线解析式;
(2)若点 在第一象限内,当 时,求四边形 的面积;
(3)在(2)的条件下,若点 为直线 上一点,点 为平面直角坐标系内一点,是否存在这样的点 和点 ,使得以点 , , , 为顶点的四边形是菱形?若存在,直接写出点 的坐标;若不存在,请说明理由.
【温馨提示:考生可以根据题意,在备用图中补充图形,以便探究】
如图,已知二次函数 的图象交 轴于点 和点 ,交 轴于点 .
(1)求这个二次函数的表达式;
(2)若点 在第二象限内的抛物线上,求四边形 面积的最大值和此时点 的坐标;
(3)在平面直角坐标系内,是否存在点 ,使 , , , 四点构成平行四边形?若存在,直接写出点 的坐标;若不存在,说明理由.
如图,在平面直角坐标系中,抛物线 交 轴于点 ,交 轴于 、 两点, , ,点 是抛物线上的动点,点 在顶点和 点之间运动(不包括顶点和 点), 轴,交直线 于点 .
(1)求抛物线的解析式;
(2)求线段 的最大值;
(3)若点 在直线 上, , ,求点 的坐标.
如图①,已知 的三个顶点坐标分别为 、 、 ,直线 交 轴正半轴于点 .
(1)求经过 、 、 三点的抛物线解析式及顶点 的坐标;
(2)连接 、 ,设 , ,若 ,求点 的坐标;
(3)如图②,在(2)的条件下,动点 从点 出发以每秒 个单位的速度在直线 上移动(不考虑点 与点 、 重合的情况),点 为抛物线上一点,设点 移动的时间为 秒,在点 移动的过程中,以 、 、 、 四个点为顶点的四边形能否成为平行四边形?若能,直接写出所有满足条件的 值及点 的个数;若不能,请说明理由.
如图,在平面直角坐标系 中,平行四边形 的 边与 轴交于 点, 是 的中点, 、 、 的坐标分别为 , , .
(1)求过 、 、 三点的抛物线的解析式;
(2)试判断抛物线的顶点是否在直线 上;
(3)设过 与 平行的直线交 轴于 , 是线段 之间的动点,射线 与抛物线交于另一点 ,当 的面积最大时,求 的坐标.