如图①,已知 ΔABC 的三个顶点坐标分别为 A ( − 1 , 0 ) 、 B ( 3 , 0 ) 、 C ( 0 , 3 ) ,直线 BE 交 y 轴正半轴于点 E .
(1)求经过 A 、 B 、 C 三点的抛物线解析式及顶点 D 的坐标;
(2)连接 BD 、 CD ,设 ∠ DBO = α , ∠ EBO = β ,若 tan ( α − β ) = 1 ,求点 E 的坐标;
(3)如图②,在(2)的条件下,动点 M 从点 C 出发以每秒 2 个单位的速度在直线 BC 上移动(不考虑点 M 与点 C 、 B 重合的情况),点 N 为抛物线上一点,设点 M 移动的时间为 t 秒,在点 M 移动的过程中,以 E 、 C 、 M 、 N 四个点为顶点的四边形能否成为平行四边形?若能,直接写出所有满足条件的 t 值及点 M 的个数;若不能,请说明理由.
如图,一艘货轮在A处发现其北偏东45°方向有一海盗船,立即向位于正东方向B处的海警舰发出求救信号,并向海警舰靠拢,海警舰立即沿正西方向对货轮实施救援,此时距货轮200海里,并测得海盗船位于海警舰北偏西60°方向的C处. (1)求海盗船所在C处距货轮航线AB的距离. (2)若货轮以45海里/时的速度向A处沿正东方向海警舰靠拢,海盗以50海里/时的速度由C处沿正南方向对货轮进行拦截,问海警舰的速度应为多少时才能抢在海盗之前去救货轮?(结果保留根号)
先化简,再求值:,其中x是不等式组的整数解.
计算:.
将一个长方形纸片连续对折,对折的次数越多,折痕的条数也就越多,如第一次对折后,有1条折痕,第2次对折后,共有3条折痕。 (1)第3次对折后共有多少条折痕?第4次对折后呢? (2)请找出折痕条数与对折次数的对应规律,写出对折n次后,折痕有多少条?
宾馆重新装修后,准备在大厅的主楼梯上铺设一种红地毯,已知这种地毯每平方米售价40元,主楼梯道宽2米,其侧面如图所示,求买地毯至少需要多少元?