如图,直线 y = kx + b ( k 、 b 为常数)分别与 x 轴、 y 轴交于点 A ( − 4 , 0 ) 、 B ( 0 , 3 ) ,抛物线 y = − x 2 + 2 x + 1 与 y 轴交于点 C .
(1)求直线 y = kx + b 的函数解析式;
(2)若点 P ( x , y ) 是抛物线 y = − x 2 + 2 x + 1 上的任意一点,设点 P 到直线 AB 的距离为 d ,求 d 关于 x 的函数解析式,并求 d 取最小值时点 P 的坐标;
(3)若点 E 在抛物线 y = − x 2 + 2 x + 1 的对称轴上移动,点 F 在直线 AB 上移动,求 CE + EF 的最小值.
如图,伞不论张开还是收紧,伞柄AP始终平分同一平面内两条伞架所成的角∠BAC,当伞收紧时,结点D与点M重合,且点A、E、D在同一条直线上,已知部分伞架的长度如下:单位:cm
(1)求AM的长。 (2)当∠BAC=104°时,求AD的长(精确到1cm),备用数据:sin52°=0.788,cos52°=0.6157,tan52°=1.2799。
吉安市某校对九年级学生进行“综合素质”评价,评价的结果为A(优)、B(良好)、C(合格)、D(不合格)四个等级,现从中抽测了若干名学生的“综合素质”等级作为样本进行数据处理,并作出如图所示的统计图,已知图中从左到右的四个长方形的高的比为:14︰9︰6︰1,评价结果为D等级的有2人,请你回答以下问题: (1)共抽测了多少人? (2)样本中B等级的频率是多少?C等级的频率是多少? (3)如果要绘制扇形统计图,A、D两个等级在扇形统计图中所占的圆心角分别是多少度? (4)该校九年级的毕业生共900人,假如“综合素质”等级为A或B的学生才能报考市一中,请你计算该校大约有多少名学生可以报考市一中?
如图,在平面直角坐标系中,直线y=2x+b(b<0)与坐标轴交于A,B两点,与双曲线(x>0)交于D点,过点D作DC⊥x轴,垂足为C,连接OD。已知△AOB≌△ACD。 (1)如果b=-2,求k的值; (2)试探究k与b的数量关系,并写出直线OD的解析式。
一个不透明的口袋里装有分别标有汉字“秀”、“美”、“吉”、“安”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球。 (1)若从中任取一个球,球上的汉字刚好是“吉”的概率为多少? (2)甲从中任取一球,不放回,再从中任取一球,请用树状图的方法,求出甲取出的两个球上的汉字恰能组成“秀美”或“吉安”的概率P1。 (3)乙从中任取一球,记下汉字后再放回袋中,然后再从中任取一球,记乙取出的两个球上的汉字恰能组成“秀美”或“吉安”的概率为P2,指出P1,P2的大小关系(请直接写出结论,不必证明)。
先化简,再求值:,其中