如图,直线 y = kx + b ( k 、 b 为常数)分别与 x 轴、 y 轴交于点 A ( − 4 , 0 ) 、 B ( 0 , 3 ) ,抛物线 y = − x 2 + 2 x + 1 与 y 轴交于点 C .
(1)求直线 y = kx + b 的函数解析式;
(2)若点 P ( x , y ) 是抛物线 y = − x 2 + 2 x + 1 上的任意一点,设点 P 到直线 AB 的距离为 d ,求 d 关于 x 的函数解析式,并求 d 取最小值时点 P 的坐标;
(3)若点 E 在抛物线 y = − x 2 + 2 x + 1 的对称轴上移动,点 F 在直线 AB 上移动,求 CE + EF 的最小值.
如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与x轴相交于点A(-3,0),与y轴交于点B,且与正比例函数y=的图象交点为C(m,4)求:(1)一次函数y=kx+b的解析式;(2)若点D在第二象限,△DAB是以AB为直角边的等腰直角三角形,直接写出点D的坐标。(3)在x轴上求一点P使△POC为等腰三角形,请直接写出所有符合条件的点P的坐标.
已知正方形ABCD和正方形AEFG有一个公共点A,点G、E分别在线段AD、AB上.(1)如图1, 连结DF、BF,若将正方形AEFG绕点A按顺时针方向旋转,判断:“在旋转的过程中线段DF与BF的长始终相等.”是否正确,若正确请说明理由,若不正确请举反例说明;(2)若将正方形AEFG绕点A按顺时针方向旋转, 连结DG,在旋转的过程中,你能否找到一条线段的长与线段DG的长始终相等.并以图2为例说明理由.
甲、乙两车分别从相距200千米的A、B两地同时出发相向而行,甲到B地后立即返回,乙到A地后停止行驶,下图是它们离各自出发地的距离(km)与行驶时间(h)之间的函数图象.(1)请直接写出甲离出发地A的距离(km)与行驶时间(h)之间的函数关系式,并写出自变量的取值范围;(2)求出函数图像交点M的坐标并指出该点坐标的实际意义;(3)求甲、乙两车从各自出发地驶出后经过多长时间相遇.
某医药研究所开发了一种新药,在试验时发现,如果成人按规定剂量服用2小时时血液中含药量最高,达每毫升6微克,接着逐步衰减,10小时时血液中含药量为每毫升3微克,每毫升血液中含药量y(微克)随服药后时间x(小时)的变化如图所示,当成人按规定剂量服药后。⑴分别求出x<2与x>2时y与x的函数关系式⑵如果每毫升血液中含药量为或3微克以上时,在治疗时是有效的,那么这个有效时间是多长?
如图, 已知∠ABC=90°,点P为射线BC上任意一点(点P与点B不重合),分别以AB、AP为边在∠ABC的内部作等边△ABE和△APQ,连结QE并延长交BP于点F.(1)试说明:∠AEQ=90°;(2)猜想EF与图中哪条线段相等(不能添加辅助线产生新的线段),并说明理由.