如图,抛物线 y = ﹣ x 2 + 3 x + 4 与 x 轴交于 A , B 两点(点 A 位于点 B 的左侧),与 y 轴交于 C 点,抛物线的对称轴 l 与 x 轴交于点 N ,长为 1 的线段 P Q (点 P 位于点 Q 的上方)在 x 轴上方的抛物线对称轴上运动.
(1)直接写出 A , B , C 三点的坐标;
(2)求 C P + P Q + Q B 的最小值;
(3)过点 P 作 P M ⊥ y 轴于点 M ,当 △ C P M 和 △ Q B N 相似时,求点 Q 的坐标.
将两个全等的直角三角形ABC和DBE按图①方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E落在AB上,DE所在直线交AC所在直线于点F.(1)求证:AF+EF=DE;(2)若将图①中的△DBE绕点B按顺时针方向旋转角α,且0°<α<60°,其它条件不变,请在图②中画出变换后的图形,并直接写出你在(1)中的结论是否仍然成立;(3)若将图①中的△DBE绕点B按顺时针方向旋转角β,且60°<<180°,其它条件不变,如图③,你认为(1)中的结论还成立吗?若成立,写出证明过程;若不成立,请写出此时AF、EF与DE之间的关系,并说明理由。
△ABC在平面直角坐标系xOy中的位置如图所示.(1)作△ABC关于点C成中心对称的△A1B1C1.(2)将△A1B1C1向右平移4个单位,作出平移后的△A2B2C2.(3)在x轴上求作一点P,使PA1+PC2的值最小,并求出点P的坐标
(3分×2)在下列所给四个代数式中,选择合适的代数式并求值① ② ③ ④ 若是关于的方程的根,我选_________求值.若且满足,我选_________求值.
按要求解下列一元二次方程(3分×2+5分×2)(1)(公式法); (2)(配方法)(3)已知是一元二次方程两根,求的值.(4)求方程两实数根之积的最大值.
如图一条抛物线(a≠0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”. (1)“抛物线三角形”一定是_______________三角形; (2)若抛物线y=-x2+bx(b>0)的“抛物线三角形”是等腰直角三角形,求b的值; (3)如图,△OAB是抛物线y=-x2+b′x(b′>0)的“抛物线三角形”,是否存在以原点O为对称中心的矩形ABCD?若存在,求出过O、C、D三点的抛物线的表达式;若不存在,说明理由.