如图, A B 是 ⊙ O 的直径,点 C 是圆上的一点, C D ⊥ A D 于点 D , A D 交 ⊙ O 于点 F ,连接 A C ,若 A C 平分 ∠ D A B ,过点 F 作 F G ⊥ A B 于点 G 交 A C 于点 H .
(1)求证: C D 是 ⊙ O 的切线;
(2)延长 A B 和 D C 交于点 E ,若 A E = 4 B E ,求 cos ∠ D A B 的值;
(3)在(2)的条件下,求 FH AF 的值.
先化简,再求值:,其中x=.
解不等式组并把解集在数轴上表示出来.
计算:
如图,已知平面直角坐标系中,点A(2,m),B(-3,n)为两动点,其中m﹥1,连结,,作轴于点,轴于点.求证:mn=6当时,抛物线经过两点且以轴为对称轴,求抛物线对应的二次函数的关系式在(2)的条件下,设直线交轴于点,过点作直线交抛物线于两点,问是否存在直线,使S⊿POF:S⊿QOF=1:2?若存在,求出直线对应的函数关系式;若不存在,请说明理由.
随着生活水平的逐步提高,某单位的私家小轿车越来越多,为确保有序停车,单位决定筹集资金维修和新建一批停车棚.该单位共有42辆小轿车,准备维修和新建的停车棚共有6个,费用和可供停车的辆数及用地情况如下表:
已知可支配使用土地面积为580m2,若新建停车棚个,新建和维修的总费用为万元.求与之间的函数关系满足要求的方案有几种?为确保工程顺利完成,单位最少需要出资多少万元