如图,已知抛物线 y = a x 2 + 2 x + c 与 y 轴交于点 A ( 0 , 6 ) ,与 x 轴交于点 B ( 6 , 0 ) ,点 P 是线段 AB 上方抛物线上的一个动点.
(1)求这条抛物线的表达式及其顶点坐标;
(2)当点 P 移动到抛物线的什么位置时,使得 ∠ PAB = 75 ° ,求出此时点 P 的坐标;
(3)当点 P 从 A 点出发沿线段 AB 上方的抛物线向终点 B 移动,在移动中,点 P 的横坐标以每秒1个单位长度的速度变动;与此同时点 M 以每秒1个单位长度的速度沿 AO 向终点 O 移动,点 P , M 移动到各自终点时停止.当两个动点移动 t 秒时,求四边形 PAMB 的面积 S 关于 t 的函数表达式,并求 t 为何值时, S 有最大值,最大值是多少?
先化简再求值:,其中x满足。
解不等式组,并把解集在数轴上表示出来。
“五一”期间,小红随父母外出游玩,带了2件上衣和3条长裤(把衣服和裤子分别装在两个袋子里),上衣颜色有红色、黄色,长裤有红色、黑色、黄色,问:(1)小明随意拿出一条裤子和一件上衣配成一套,列出所有可能出现的结果;(2)配好一套衣服,小明正好拿到黑色长裤的概率是多少?(3)他任意拿出一件上衣和一条长裤穿上,颜色正好相同的概率是多少?
已知,如图所示,正方形ABCD,E、M、F、N分别是AD、AB、BC、CD上的点,若EF⊥MN,求证:EF=MN.
先化简,再求值:(2a+1)2﹣2(2a+1)+3,其中a=.