如图,抛物线 y = a x 2 + bx + 3 经过点 A ( − 1 , 0 ) 和点 B ( 4 , 0 ) ,且与 y 轴相交于点 C .点 D 是线段 BC 上的一个动点(不与点 B , C 重合),设点 D 的横坐标为 t ,过点 D 作 DE / / y 轴交抛物线于点 E ,点 F 在 DE 的延长线上,且 EF = DE ,过点 F 作 FG ⊥ 直线 BC ,垂足为点 G .
(1)求此抛物线的解析式和点 C 的坐标;
(2)设 ΔDFG 的周长为 L ,求 L 关于 t 的函数关系式;
(3)直线 m 经过点 C ,且直线 m / / x 轴,点 P 是直线 m 上任意一点,过点 P 分别作 PQ ⊥ 直线 BC , PR ⊥ x 轴,垂足分别为点 Q , R ,若以三点 P , Q , R 为顶点的三角形是等腰三角形,请直接写出点 P 的坐标.
已知:如图,,垂足分别为,且 求证:
如图,已知,直线分别交于点平分,若,求的度数。
小明参加学校组织的知识竞赛,共有道题.答对一题记分,答错(或不答)一题记分,小明参加本次竞赛要超过分,他至少要答对多少道题?
为响应国家要求中小学生每天锻炼小时的号召,某校开展了形式多样的“阳光体育运动”活动,小明对某班同学参加锻炼的情况进行了统计,并绘制了图和图.问: (1)该班共有多少名学生?若全年级共有名学生,估计全年级参加兵乓球活动的学生有多少名? (2)请在图将“兵乓球”部分的图形补充完整,并求出扇形统计图,表示“足球”的扇形圆心角的度数
如图,平面直角坐标系中,三角形的顶点都在网格点上,平移三角形,使点与坐标原点重合,请写出图中点的坐标并画出平移后的三角形