观察例题:∵,即, ∴的整数部分为2,小数部分为。请你观察上述的规律后试解下面的问题: 如果的小数部分为, 的小数部分为,求的值.
如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如, ,,因此4,12,20都是“神秘数” (1)28和2012这两个数是“神秘数”吗?为什么? (2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么? (3)两个连续奇数的平方差(取正数)是神秘数吗?为什么?
如图:某校一块长为2a米的正方形空地是七年级四个班的清洁区,其中分给七年级(1)班的清洁区是一块边长为(a-2b)米的正方形,(0<b<),(1)分别求出七(2)、七(3)班的清洁区的面积;(2)七(4)班的清洁区的面积比七(1)班的清洁区的面积多多少平方米?
已知a+b=4,ab=-2,求a2-ab+b2的值.
已知10a=5,10b=6,求:(1)的值;(2)的值
计算:(1) (2) (3) (4)(2a-b)2(2a+b)2