分解因式:
(本小题满分10分) 某市的重大惠民工程——公租房建设已陆续竣工,计划10年内解决低收入人群的住房问题,前6年,每年竣工投入使用的公租房面积y(单位:百万平方米),与时间x的关系是y=-x+5,(x单位:年,1≤x≤6且x为整数);后4年,每年竣工投入使用的公租房面积y(单位:百万平方米),与时间菇的关系是y=-x+(x单位:年,7≤x≤10且x为整数).假设每年的公租房全部出租完.另外,随着物价上涨等因素的影响,每年的租金也随之上调,预计,第x年投入使用的公租房的租金z(单位:元/m2)与时间x(单位:年,1≤x≤10且x为整数)满足一次函数关系如下表:
(1)求出z与x的函数关系式; (2)求政府在第几年投入的公租房收取的租金最多,最多为多少百万元; (3)若第6年竣工投入使用的公租房可解决20万人的住房问题,政府计划在第10年投入的公租房总面积不变的情况下,要让人均住房面积比第6年人均住房面积提高a%,这样可解决住房的人数将比第6年减少1.35a%,求a的值. (参考数据:≈17.7,≈17.8,≈17.9)
(本小题满分8分)已知抛物线C1 :y=-x2+2mx+1(m为常数,且m>0)的顶点为A,与y轴交于点C;抛物线C2与抛物线C1关于y轴对称,其顶点为B,连接AC,BC,AB. (1)当m=1时,判定ΔABC的形状,并说明理由; (2)抛物线C1上是否存在点P,使得四边形ABCP为菱形?如果存在,请求出m的值;如果不存在,请说明理由.
(本小题满分8分)如图l,某超市从底楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB的坡度为l:2.4,AB的长度是13米,MN是二楼楼顶,MN∥PQ,C是MN上处在自动扶梯顶端B点正上方的一点,BC⊥MN,在自动扶梯底端A处测得C点的仰角为42°,求二楼的层高BC(精确到0.1米).
(本小题满分8分)如图,在平行四边形ABCD中,以点A为圆心,AB为半径的圆,交BC于点E. (1)求证:ΔABC≌ΔEAD; (2)如果AB⊥AC,AB=6,cos∠B=,求EC的长.
(本小题满分8分)在一个不透明的盒子中放有四张分别写有数字l,2,3,4的红色卡片和三张分别写有数字l,2,3的蓝色卡片,卡片除颜色和数字外其他完全相同. (1)从中任意抽取一张卡片,则该卡片上写有数字l的概率是____; (2)将3张蓝色卡片取出后放入另外一个不透明的盒子内,然后在两个盒子内各任意抽取一张卡片,以红色卡片上的数字作为十位数,蓝色卡片上的数字作为个位数组成一个两位数,求这个两位数大于22的概率.(请利用树状图或列表法说明)