高中数学

本题满分分 已知函数f (x)=x3(1-a)x2-3ax+1,a>0.
(Ⅰ) 证明:对于正数a,存在正数p,使得当x∈[0,p]时,有-1≤f (x)≤1;
(Ⅱ) 设(Ⅰ)中的p的最大值为g(a),求g(a)的最大值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分14分)
已知函数
(Ⅰ)若函数处取得极值,求实数a的值;
(Ⅱ)在(I)条件下,若直线与函数的图象相切,求实数k的值;
(Ⅲ)记,求满足条件的实数a的集合.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分16分)
已知函数,若为定义在R上的奇函数,则(1)求实数的值;(2)求函数的值域;(3)求证:在R上为增函数;(4)若m为实数,解关于的不等式:

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知其中.(1)求函数的单调区间;(2)若函数在区间内恰有两个零点,求的取值范围;
(3)当时,设函数在区间上的最大值为最小值为,记,求函数在区间上的最小值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知


(1)求的表达式,并判断的奇偶性;
(2)试证明:函数的图象上任意两点的连线的斜率大于0;
(3)对于,当时,恒有求m的取值范围。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

是定义在上的单调增函数,满足
(1)求
(2)若,求的取值范围。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分8分)已知函数.
(1)求证:函数上为增函数;
(2)当函数为奇函数时,求的值;
(3)当函数为奇函数时, 求函数上的值域.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分14分)
设函数为实常数)为奇函数,函数
(Ⅰ)求的值;
(Ⅱ)求上的最大值;
(Ⅲ)当时,对所有的恒成立,求实数的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分12分)
某种产品投放市场以来,通过市场调查,销量t(单位:吨)与利润Q(单位:万元)的变化关系如右表,现给出三种函数,请你根据表中的数据,选取一个恰当的函数,使它能合理描述产品利润Q与销量t的变化,求所选取的函数的解析式,并求利润最大时的销量.

销量t
1
4
6
利润Q
2
5
4.5
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

分已知函数上的奇函数,且
(1)求的值
(2)若,求的值
(3)若关于的不等式上恒成立,求的取值范围

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数
(1)如果函数的单调减区间为,求函数的解析式;
(2)在(1)的条件下,求函数的图像过点的切线方程;
(3)证明:对任意的,不等式恒成立,求实数的取值范围。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(12分)我们把同时满足下列两个性质的函数称为“和谐函数” :
①函数在整个定义域上是单调增函数或单调减函数;
②在函数的定义域内存在区间,使得函数在区间上的值域为.
⑴已知幂函数的图像经过点,判断是否是和谐函数?
⑵判断函数是否是和谐函数?
⑶若函数是和谐函数,求实数的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数的图像与轴有两个交点
(1)设两个交点的横坐标分别为试判断函数有没有最大值或最小值,并说明理由.
(2)若在区间上都是减函数,求实数的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

对于函数,若存在x0∈R,使方程成立,则称x0的不动点,已知函数a≠0).
(1)当时,求函数的不动点;
(2)若对任意实数b,函数恒有两个相异的不动点,求a的取值范围;

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数
(Ⅰ)若的极值点,求实数的值;
(Ⅱ)若上为增函数,求实数的取值范围;
(Ⅲ)当时,方程有实根,求实数的最大值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中数学函数迭代解答题