已知函数(Ⅰ)若为的极值点,求实数的值;(Ⅱ)若在上为增函数,求实数的取值范围;(Ⅲ)当时,方程有实根,求实数的最大值.
已知函数定义在(―1,1)上,对于任意的,有,且当时,。(1)验证函数是否满足这些条件;(2)判断这样的函数是否具有奇偶性和单调性,并加以证明;(3)若,求方程的解。
为了绿化城市,准备在如图所示的区域DFEBC内修建一个矩形PQRC的草坪,且PQ∥BC,RQ⊥BC,另外△AEF的内部有一文物保护区不能占用,经测量AB=100m,BC=80m,AE=30m,AF=20m。应如何设计才能使草坪的占地面积最大?
已知定义域为,值域为[-5,1],求实数的值。
正三角形ABC的边长为1,且,求的值。
已知向量,函数求函数的最小正周期T及值域