高中数学

(本小题满分14分)对定义域分别是的函数
规定:函数
已知函数
(1)求函数的解析式;
⑵对于实数,函数是否存在最小值,如果存在,求出其最小值;如果不存在,请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分14分)
若函数对任意的实数,均有,则称函数是区间上的“平缓函数”.  
(1) 判断是不是实数集R上的“平缓函数”,并说明理由;
(2) 若数列对所有的正整数都有 ,设,
求证: .

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数,若R
恒成立,求实数的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分12分)已知函数
(Ⅰ) 若a =1,求函数的图像在点处的切线方程;
(Ⅱ)求的单调区间;
(Ⅲ)如果当时,恒成立,求实数的取值范围。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本题满分14分) 已知是方程的两个不等实根,函数的定义域为
⑴当时,求函数的值域;
⑵证明:函数在其定义域上是增函数;
⑶在(1)的条件下,设函数
若对任意的,总存在,使得成立,
求实数的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数,求使成立的的取值范围。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

是定义在上的单调增函数,满足,

求(1)
(2)若,求的取值范围。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数
(Ⅰ)求的单调区间和值域;
(Ⅱ)设,函数,若对于任意,总存在使得成立,求的取值范围。

来源:
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数
(1)如果函数的定义域为R求实数m的取值范围。
(2)如果函数的值域为R求实数m的取值范围。

来源:
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本题12分)

(1)求时函数的解析式
(2)用定义证明函数在上是单调递增
(3)写出函数的单调区间

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分16分)
已知为此函数的定义域)同时满足下列两个条件:①函数
内单调递增或单调递减;②如果存在区间,使函数在区间上的值域为,那么称为闭函数。请解答以下问题:
(1)判断函数是否为闭函数?并说明理由;
(2)求证:函数)为闭函数;
(3)若是闭函数,求实数的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(12分)已知是定义在(0,+∞)上的增函数,且满足 , 
(1)求证:=1    (2) 求不等式的解集.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为轴正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰好在失事船正南方向12海里处,如图,现假设:①失事船的移动路径可视为抛物线;②定位后救援船即刻沿直线匀速前往救援;③救援船出发小时后,失事船所在位置的横坐标为

(1)当时,写出失事船所在位置的纵坐标,若此时两船恰好会合,求救援船速度的大小和方向 (若确定方向时涉及到的角为非特殊角,用符号及其满足的条件表示即可)
(2)问救援船的时速至少是多少海里才能追上失事船?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分10分)已知函数处取得极值2。
(Ⅰ)求函数的解析式;
(Ⅱ)当m满足什么条件时,在区间为增函数;

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中数学函数迭代解答题