设是定义在上的单调增函数,满足,,求(1);(2)若,求的取值范围。
设是上的奇函数,,当时,. (1)求的值; (2)求时,的解析式; (3)当时,求方程的所有实根之和.
已知定义域为R的函数奇函数. (1)求,的值;(2)解关于的不等式.
(1)命题:“”,命题:“”,若“且”为假命题,求实数的取值范围。 (2)已知,,若是的必要而不充分必要条件,求实数的取值范围.
选修4—5:不等式选讲. 设函数. (1)若不等式的解集为,求的值; (2)若存在,使,求的取值范围.
选修4—4:坐标系与参数方程选讲. 已知直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极 坐标系,圆的极坐标方程为. (1)求圆的直角坐标方程; (2)若是直线与圆面的公共点,求的取值范围.