(本小题满分12分)
已知函数是定义域为的奇函数,(1)求实数的值;(2)证明是上的单调函数;(3)若对于任意的,不等式恒成立,求的取值范围.
(本小题满分12分)
已知函数:.
(1) 当时①求的单调区间;
②设,若对任意,存在,使,求实数取值范围.
(2) 当时,恒有成立,求的取值范围.
已知函数是定义在R上的奇函数,当时,
(1)求的解析式
(2)解关于的不等式
(本小题满分12分)
设为实数,且
(1)求方程的解;
(2)若,满足,试写出与的等量关系(至少写出两个);
(3)在(2)的基础上,证明在这一关系中存在满足.
(本小题满分12分)
已知常数,函数
(1)求,的值;
(2)讨论函数在上的单调性;
(3)求出在上的最小值与最大值,并求出相应的自变量的取值.
(本小题满分12分)
已知函数其中
(1)、若的单调增区间是(0.1),求m的值
(2)、当时,函数的图像上任意一点的切线斜率恒大于3m,求m的取值范围.
(本小题满分14分)已知函数。
(Ⅰ)若函数在定义域内为增函数,求实数的取值范围;
(Ⅱ)设,若函数存在两个零点,且满足,问:函数在处的切线能否平行于轴?若能,求出该切线方程;若不能,请说明理由。
(本小题满分12分)
设函数,其中表示不超过的最大整数,如.
(1)求的值;
(2)若在区间上存在x,使得成立,求实数k的取值范围;
(3)求函数的值域.
已知函数
(Ⅰ)设在区间的最小值为,求的表达式;
(Ⅱ)设,若函数在区间上是增函数,求实数的取值范围。