对于函数,若在定义域内存在实数,满足,则称为“局部奇函数”.
(Ⅰ)已知二次函数,试判断是否为“局部奇函数”?并说明理由;
(Ⅱ)若是定义在区间上的“局部奇函数”,求实数的取值范围;
(Ⅲ)若为定义域上的“局部奇函数”,求实数的取值范围.
已知函数
(1)当时,求在上的最小值;
(2)若函数在上为增函数,求正实数的取值范围;
(3)若关于的方程在区间内恰有两个相异的实根,求实数的取值范围.
已知函数在处取得极值,且恰好是的一个零点.
(Ⅰ)求实数的值,并写出函数的单调区间;
(Ⅱ)设、分别是曲线在点和(其中)处的切线,且.
①若与的倾斜角互补,求与的值;
②若(其中是自然对数的底数),求的取值范围.
设函数.
(1)若x=时,取得极值,求的值;
(2)若在其定义域内为增函数,求的取值范围;
(3)设,当=-1时,证明在其定义域内恒成立,并证明().
已知,直线与函数的图像都相切,且与函数的图像的切点的横坐标为1.
(1)求直线的方程及的值;
(2)若(其中是的导函数),求函数的最大值;
(3)当时,求证:.
已知函数f(x)=|2x-1|+|2x+a|,g(x)=x+3.
(Ⅰ)当a=-2时,求不等式f(x)<g(x)的解集;
(Ⅱ)设a>-1,且当x∈[,)时,f(x)≤g(x),求a的取值范围.
已知函数是奇函数。
(1)求实数a的值;
(2)判断函数在R上的单调性并用定义法证明;
(3)若函数的图像经过点,这对任意不等式≤恒成立,求实数m的范围。
已知函数.
(1)讨论函数的单调性;
(2)若函数的最小值为,求的最大值;
(3)若函数的最小值为,为定义域内的任意两个值,试比较 与的大小.
已知函数在点处的切线方程为.
(I)求,的值;
(II)对函数定义域内的任一个实数,恒成立,求实数的取值范围.