已知函数,.(Ⅰ)若,求函数的极值;(Ⅱ)若函数在上有极值,求的取值范围.
已知⊙M:x2+(y-2)2=1,Q是x轴上的动点,QA,QB分别切⊙M于A,B两点.(Ⅰ)若=,求及直线MQ的方程;(Ⅱ)求证:直线AB恒过定点.
三角形ABC的三个顶点A(1,3)B(1,﹣3)C(3,3),求(Ⅰ)BC边上中线AD所在直线的方程;(Ⅱ)三角形ABC的外接圆O1的方程;(Ⅲ)已知圆O2:,求圆心在x-y-4=0,且过圆O1与圆O2交点的圆的方程。
如图,棱锥的底面是矩形,⊥平面,.(1)求证:BD⊥平面PAC;(2)求二面角P—CD—B的大小;(3)求点C到平面PBD的距离.
如图是一个正三棱柱(以为底面)被一平面所截得到的几何体,截面为.已知,,,.(1)设点是的中点,证明:平面;(2)求与平面所成的角的正弦值;
已知集合A={x|x2﹣2x﹣3≤0},B={x|x2﹣2mx+m2﹣9≤0},m∈R.(1)若m=3,求A∩B;(2)若A⊆B,求实数m的取值范围.