对于三次函数的导数,函数的导数,若方程有实数解为函数的“拐点”,某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.给定函数,请你根据上面探究结果,解答以下问题:
(1)函数的对称中心坐标为 ______ ;
(2)计算= __________ .
函数的定义域为D,若对于任意,当时都有,则称函数在D上为非减函数,设函数在[0,1]上为非减函数,且满足以下三个条件:①;②;③,则等于( )
A. | B. | C.1 | D. |
给定函数和常数,若恒成立,则称为函数的一个“好数对”;若恒成立,则称为函数的一个“类好数对”.已知函数的定义域为.
(Ⅰ)若是函数的一个“好数对”,且,求;
(Ⅱ)若是函数的一个“好数对”,且当时,,求证:
函数在区间上无零点;
(Ⅲ)若是函数的一个“类好数对”,,且函数单调递增,比较与的大小,并说明理由.
(本小题满分12分)定义在上的函数,如果满足:对任意,存在常数,都有成立,则称是上的有界函数,其中称为函数的上界.已知函数,
(1)当时,求函数在上的值域,并判断函数在上是否为有界函数,请说明理由;
(2)若函数在上是以4为上界的有界函数,求实数的取值范围.
若函数f(x)为定义域D上的单调函数,且存在区间(其中a<b),使得当x∈[a,b]时,f(x)的取值范围恰为[a,b],则称函数f(x)是D上的“正函数”,若是上的正函数,则实数k的取值范围是
(本小题满分14分)若在定义域内存在实数,使得成立,则称函数有“飘移点”.
(1)函数是否有“飘移点”?请说明理由;
(2)证明函数在上有“飘移点”;
(3)若函数在上有“飘移点”,求实数的取值范围.
如果对于函数的定义域内任意两个自变量的值,当时,都有且存在两个不相等的自变量,使得,则称为定义域上的不严格的增函数.已知函数的定义域、值域分别为,,,且为定义域上的不严格的增函数,那么这样的函数共有________个.
在集合中,任取一个偶数和一个奇数,构成以原点为起点的向量.从所有得到的以原点为起点的向量中,任取两个向量为邻边作平行四边形,记所有作成的平行四边形的个数为,其中面积等于的平行四边形的个数为,则( )
A. | B. | C. | D. |
函数,其中,若动直线与函数的图像有三个不同的交点,它们的横坐标分别为,则是否存在最大值?若存在,在横线处填写其最大值;若不存在,直接填写“不存在”______________.
定义:如果函数在定义域内给定区间上存在,满足,则称函数是上的“平均值函数”,是它的一个均值点.例如是上的平均值函数,0就是它的均值点.若函数是上的“平均值函数”,则实数m的取值范围是_________.
某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于6时再增选一名代表.那么,各班可推选代表人数与该班人数之间的函数关系用取整函数 (表示不大于的最大整数)可以表示为( )
A. | B. | C. | D. |
某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于6时再增选一名代表.那么,各班可推选代表人数与该班人数之间的函数关系用取整函数 (表示不大于的最大整数)可以表示为 ( )
A. | B. | C. | D. |
(本小题满分14分)已知函数,,设曲线在点处的切线方程为. 如果对任意的,均有:
①当时,;
②当时,;
③当时,,
则称为函数的一个“ʃ-点”.
(1)判断是否是下列函数的“ʃ-点”:
①; ②.(只需写出结论)
(2)设函数.
(ⅰ)若,证明:是函数的一个“ʃ-点”;
(ⅱ)若函数存在“ʃ-点”,直接写出的取值范围.
设函数在上有意义,对给定正数,定义函数则称函数为的“孪生函数”,若给定函数,则的值域为( )
A.[1,2] | B.[-1,2] | C. | D. |