(本小题满分12分)定义在上的函数,如果满足:对任意,存在常数,都有成立,则称是上的有界函数,其中称为函数的上界.已知函数,(1)当时,求函数在上的值域,并判断函数在上是否为有界函数,请说明理由;(2)若函数在上是以4为上界的有界函数,求实数的取值范围.
设,是函数的两个极值点,且..(Ⅰ)用表示,并求的最大值;(Ⅱ)若函数,求证:当且时,
对于数列,定义为数列的一阶差分数列,其中.(Ⅰ)若数列的通项公式,求的通项公式;(Ⅱ)若数列的首项是1,且.①设,求数列的通项公式;②求的前项和.
甲、乙、丙三人分别独立解一道题,甲做对的概率是,甲、乙、丙三人都做对的概率是,甲、乙、丙全部做错的概率是.(Ⅰ)分别求乙、丙两人各自做对这道题的概率;(Ⅱ)求甲、乙、丙中恰有一个人做对这道题的概率
在中,所对边分别为.已知,且.(Ⅰ)求大小.(Ⅱ)若求的面积的大小.
已知三点、、.(Ⅰ)求以、为焦点且过点P的椭圆的标准方程;(Ⅱ)设点、、关于直线的对称点分别为、、,求以、为焦点且过点的双曲线的标准方程