(本小题满分12分)某人上午7:00乘汽车以千米/小时匀速从A地出发到距300公里的B地,在B地不作停留,然后骑摩托车以千米/小时匀速从B地出发到距50公里的C地,计划在当天16:00至21:00到达C地。设乘汽车、骑摩托车的时间分别是x,y小时,如果已知所需的经费元,那么分别是多少时走的最经济,此时花费多少元?
(本小题满分12分)已知数列满足,. (Ⅰ)证明是等比数列,并求的通项公式; (Ⅱ)令,求数列的前n项和.
(本小题满分12分)已知,,分别为Δ三个内角,,所对边的边长,设,,且. (Ⅰ)求角的大小; (Ⅱ)若,Δ的面积为,求,.
(本小题满分10分)已知函数. (Ⅰ)求函数的最小正周期及单调递减区间; (Ⅱ)若,求的值域.
(本小题满分10分)选修4-5:不等式选讲 已知. (Ⅰ)解不等式; (Ⅱ)对于任意的,不等式恒成立,求的取值范围.
(本小题满分10分)选修4—4:坐标系与参数方程 以平面直角坐标系的原点为极点,轴的正半轴为极轴,已知点的直角坐标为(1,-5),点的极坐标为(4,),若直线过点,且倾斜角为,圆以为圆心,4为半径. (Ⅰ)求直线的参数方程和圆的极坐标方程; (2)试判定直线与圆的位置关系.