(本小题满分12分)某人上午7:00乘汽车以千米/小时匀速从A地出发到距300公里的B地,在B地不作停留,然后骑摩托车以千米/小时匀速从B地出发到距50公里的C地,计划在当天16:00至21:00到达C地。设乘汽车、骑摩托车的时间分别是x,y小时,如果已知所需的经费元,那么分别是多少时走的最经济,此时花费多少元?
求函数f(x)=在区间[0,3]上的积分.
计算下列定积分 (1)|sinx|dx;(2)|x2-1|dx.
已知函数f(x)=(1+x)2-aln(1+x)2在(-2,-1)上是增函数,在(-∞,-2)上为减函数. (1)求f(x)的表达式; (2)若当x∈时,不等式f(x)<m恒成立,求实数m的值; (3)是否存在实数b使得关于x的方程f(x)=x2+x+b在区间[0,2]上恰好有两个相异的实根,若存在,求实数b的取值范围.
已知函数f(x)=x3-x2+bx+c. (1)若f(x)在(-∞,+∞)上是增函数,求b的取值范围; (2)若f(x)在x=1处取得极值,且x∈[-1,2]时,f(x)<c2恒成立,求c的取值范围.
计算下列定积分 (1)x(x+1)dx; (2) (e2x+)dx; (3) sin2xdx.