(本小题满分12分)某人上午7:00乘汽车以千米/小时匀速从A地出发到距300公里的B地,在B地不作停留,然后骑摩托车以千米/小时匀速从B地出发到距50公里的C地,计划在当天16:00至21:00到达C地。设乘汽车、骑摩托车的时间分别是x,y小时,如果已知所需的经费元,那么分别是多少时走的最经济,此时花费多少元?
(1)求双曲线的标准方程; (2)设F1和F2是这双曲线的左、右焦点,点P在这双曲线上,且|PF1|·|PF2|=32,求 ∠F1PF2的大小
为2∶1,将逆时针方向转90°到QH, (1)求R点轨迹方程 (2)求|RH|的最大值
A,B恒有 (1)求弦AB中点M的轨迹方程 (2)以AP和PB为邻边作矩形AQBP,求点Q轨迹方程 (3)若x,y满足Q点轨迹方程,求的最值
,定点F(10,4),对于x轴上移动的点P(t,0)作一折线FPQ,使,若折线FPQ的PQ部分与正方形ABCD的边界有公共点, (1)求:B、D坐标;(2)求t的取值范围.
两点(1)求△AOB面积的最小值及此时直线方程(O为原点) (2)求直线在两坐标轴上截距之和的最小值