(本小题满分14分)若在定义域内存在实数,使得成立,则称函数有“飘移点”.(1)函数是否有“飘移点”?请说明理由;(2)证明函数在上有“飘移点”;(3)若函数在上有“飘移点”,求实数的取值范围.
已知(1)当时,求的极值;(2)当时,讨论的单调性;(3)若对任意的,恒有成立,求实数的取值范围.
已知椭圆的由顶点为A,右焦点为F,直线与x轴交于点B且与直线交于点C,点O为坐标原点,,过点F的直线与椭圆交于不同的两点M,N.(1)求椭圆的方程;(2)求的面积的最大值.
数列满足.(1)求的表达式;(2)令,求.
圆锥PO如图1所示,图2是它的正(主)视图.已知圆O的直径为AB,C是圆周上异于A,B的一点,D为AC的中点. (1)求该圆锥的侧面积S;(2)求证:平面PAC平面POD;(3)若,在三棱锥A-PBC中,求点A到平面PBC的距离.
已知正方形ABCD的边长为2,E,F,G,H分别是边AB,BC,CD,DA的中点.(1)从C,D,E,F,G,H这六个点中,随机选取两个点,记这两个点之间的距离的平方为,求概率P.(2)在正方形ABCD内部随机取一点P,求满足的概率.