设椭圆的焦点分别为,直线交轴于点,且.(1)试求椭圆的方程;(2)过分别作互相垂直的两直线与椭圆分别交于D、E、M、N四点(如图所示),试求四边形面积的最大值和最小值.
已知圆关于直线对称,圆心在第二象限,半径为。 ⑴求圆C的方程; ⑵已知不过原点的直线与圆C相切,且在轴、轴上的截距相等,求直线的方程。
已知动点P到两定点距离之比为。 ⑴求动点P轨迹C的方程; ⑵若过点N的直线被曲线C截得的弦长为,求直线的方程。
已知直线经过点A,B,直线经过点P,Q。 ⑴若//,求的值; ⑵若⊥,求的值。
如图,在长方体ABCD—A1B1C1D1中,AA1=AD=,AB=2,E,F分别为C1D1, A1D1的中点。 ⑴求证:DE/⊥平面BCE; ⑵求证:AF//平面BDE。
已知函数 (Ⅰ)①判断函数的奇偶性,并加以证明; ②若(-1,1),计算; (Ⅱ)若函数在上恒有零点,求实数m的取值范围; (Ⅲ)若n为正整数,求证:.