(本小题满分16分)已知奇函数的定义域为,当时,.(1)求函数在上的值域;(2)若,y=的最小值为,求实数的值.
选修4-4:坐标系与参数方程 在极坐标系中, O为极点, 半径为2的圆C的圆心的极坐标为. ⑴求圆C的极坐标方程; ⑵是圆上一动点,点满足,以极点O为原点,以极轴为x轴正半轴建立直角坐标系,求点Q的轨迹的直角坐标方程.
选修4-1:几何证明选讲 如图,AB、CD是圆的两条平行弦,BE//AC,BE交CD于E、交圆于F,过A点的切线交DC的延长线于P,PC=ED=1,PA=2. (I)求AC的长; (II)求证:BE=EF.
设函数. (Ⅰ)求的单调区间和极值; (Ⅱ)是否存在实数,使得关于的不等式的解集为?若存在,求的取值范围;若不存在,试说明理由.
设椭圆E: (a,b>0)过M(2,) ,N(,1)两点,O为坐标原点, (I)求椭圆E的方程; (II)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且?若存在,写出该圆的方程,并求|AB|的取值范围,若不存在说明理由
如图,在底面为直角梯形的四棱锥中,平面,,,. ⑴求证:; ⑵求直线与平面所成的角; ⑶设点在棱上,,若∥平面,求的值.