设椭圆C: (a>b>0)的离心率为,过原点O斜率为1的直线与椭圆C相交于M,N两点,椭圆右焦点F到直线l的距离为.(1)求椭圆C的方程;(2)设P是椭圆上异于M,N外的一点,当直线PM,PN的斜率存在且不为零时,记直线PM的斜率为k1,直线PN的斜率为k2,试探究k1·k2是否为定值?若是,求出定值;若不是,说明理由.
.选修4—4:坐标系与参数方程 椭圆中心在原点,焦点在轴上。离心率为,点是椭圆上的一个动点, 若的最大值为,求椭圆的标准方程.
选修4﹣2:矩阵与变换 已知二阶矩阵对应的变换将点(﹣2,1)变换成点(0,b),求实数a,b的值.
【选做题】本题包括A,B,C,D四小题,请选定其中两题作答,每小题10分,共计20分,解答时应写出文字说明,证明过程或演算步骤. A.选修4—1:几何证明选讲 自圆O外一点P引圆的一条切线PA,切点为A,M为PA的中点, 过点M引圆O的割线交该圆于B、C两点,且∠BMP=100°, ∠BPC=40°,求∠MPB的大小.
(本小题满分16分) 已知函数. (Ⅰ)当时,求证:函数在上单调递增; (Ⅱ)若函数有三个零点,求的值; (Ⅲ)若存在,使得,试求的取值范围.
已知椭圆C:+=1(a>b>0)的离心率为,且经过点P(1,)。 (1)求椭圆C的方程; (2)设F是椭圆C的右焦点,M为椭圆上一点,以M为圆心,MF为半径作圆M。问点M满足什么条件时,圆M与y轴有两个交点? (3)设圆M与y轴交于D、E两点,求点D、E距离的最大值。