已知圆M经过直线l: 2x+y+4=0与圆C:x2+y2+2x-4y+1=0的交点,且圆M的圆心到直线2x+6y-5=0的距离为,求圆M的方程
已知函数() (Ⅰ) 当时,求函数的单调区间;(Ⅱ) 若不等式对恒成立,求a的取值范围
已知棱长为1的正方体AC1,E、F分别是B1C1、C1D的中点.(1)求证:E、F、D、B共面;(2)求点A1到平面的BDEF的距离;(3)求直线A1D与平面BDEF所成的角.
如图5:正方体ABCD-A1B1C1D1,过线段BD1上一点P(P平面ACB1)作垂直于D1B的平面分别交过D1的三条棱于E、F、G.(1)求证:平面EFG∥平面A CB1,并判断三角形类型;(2)若正方体棱长为a,求△EFG的最大面积,并求此时EF与B1C的距离.
已知正方体ABCD-A1B1C1D1的棱长为2,点E为棱AB的中点,求:(Ⅰ)D1E与平面BC1D所成角的大小;(Ⅱ)二面角D-BC1-C的大小;(Ⅲ)异面直线B1D1与BC1之间的距离.
在四棱锥P—ABCD中,底面ABCD是一直角梯形,∠BAD=90°,AD∥BC,AB=BC=a,AD=2a,且PA⊥底面ABCD,PD与底面成30°角.(1)若AE⊥PD,E为垂足,求证:BE⊥PD;(2)求异面直线AE与CD所成角的余弦值.