设,函数.(1)若x=2是函数的极值点,求的值;(2)设函数,若≤0对一切都成立,求的取值范围.
(本小题满分14分)已知函数的图象在上连续不断,定义:,.其中,表示函数在上的最小值,表示函数在上的最大值.若存在最小正整数,使得对任意的成立,则称函数为上的“阶收缩函数”.(Ⅰ)若,,试写出,的表达式;(Ⅱ)已知函数,,试判断是否为上的“阶收缩函数”,如果是,求出对应的;如果不是,请说明理由;(Ⅲ)已知,函数是上的2阶收缩函数,求的取值范围.
(本小题满分13分)已知椭圆和抛物线有公共焦点F(1,0), 的中心和的顶点都在坐标原点,过点M(4,0)的直线与抛物线分别相交于A,B两点.(Ⅰ)写出抛物线的标准方程;(Ⅱ)若,求直线的方程;(Ⅲ)若坐标原点关于直线的对称点在抛物线上,直线与椭圆有公共点,求椭圆的长轴长的最小值.
(本小题满分13分)已知函数,其中a为常数,且.(Ⅰ)若,求函数的极值点;(Ⅱ)若函数在区间上单调递减,求实数a的取值范围.
(本小题满分13分)为保护水资源,宣传节约用水,某校4名志愿者准备去附近的甲、乙、丙三家公园进行宣传活动,每名志愿者都可以从三家公园中随机选择一家,且每人的选择相互独立.(Ⅰ)求4人恰好选择了同一家公园的概率;(Ⅱ)设选择甲公园的志愿者的人数为,试求的分布列及期望.
(本小题满分14分)已知四棱锥,底面为矩形,侧棱,其中,为侧棱上的两个三等分点,如图所示.(Ⅰ)求证:;(Ⅱ)求异面直线与所成角的余弦值;(Ⅲ)求二面角的余弦值.