某人摆一个摊位卖小商品,一周内出摊天数x与盈利y(百元),之间的一组数据关系见表:
已知,,(1)在下面坐标系中画出散点图;(2)计算,,并求出线性回归方程;(3)在第(2)问条件下,估计该摊主每周7天要是天天出摊,盈利为多少?
已知两点,,求以为直径的圆的方程,并判断、、与圆的位置关系.
如图,梯形的顶点与顶点分别在平面的两侧,且梯形的两边与分别与交于两点;梯形的另两条边的延长线分别与交于两点,求证:四点共线.
已知的三个顶点,,,其外接圆为圆.(1)求圆的方程;(2)若直线过点,且被圆截得的弦长为2,求直线的方程;(3)对于线段上的任意一点,若在以为圆心的圆上都存在不同的两点,使得点是线段的中点,求圆的半径的取值范围.
【改编】如图,已知面,,;(1)在线段上找一点M,使面。(2)求由面与面所成角的二面角的正切值。
已知圆.(Ⅰ)写出圆C的标准方程,并指出圆心坐标和半径大小; (Ⅱ)是否存在斜率为的直线m,使m被圆C截得的弦为AB,且(为坐标原点).若存在,求出直线m的方程; 若不存在,说明理由.