(本小题满分13分)某巡逻艇在A处发现北偏东45相距9海里的C处有一艘走私船,正沿南偏东75的方向以10海里/小时的速度逃窜.(Ⅰ)若巡逻艇计划在正东方向进行拦截,问巡逻艇应行驶到什么位置进行设卡?(Ⅱ)若巡逻艇立即以14海里/小时的速度沿着直线方向追击,问经多少时间后巡逻艇恰追赶上该走私船?
已知函数(R,,,)图象如图,P是图象的最高点,Q为图象与轴的交点,O为原点.且,,.(Ⅰ)求函数的解析式;(Ⅱ)将函数图象向右平移1个单位后得到函数的图象,当时,求函数的最大值.
已知f(x)=logax,g(x)=2loga(2x+t-2)(a>0,a≠1,t∈R).(1)当t=4,x∈[1,2],且F(x)=g(x)-f(x)有最小值2时,求a的值;(2)当0<a<1,x∈[1,2]时,有f(x)≥g(x)恒成立,求实数t的取值范围.
已知函数。(1)求的最小正周期和单调递增区间;(2)将按向量平移后图像关于原点对称,求当最小时的。
设集合A={x|x2-3x+2=0},B={x|x2+2(a+1)x+(a2-5)=0}.(1)若A∩B={2},求实数a的值;(2)若A∪B=A,求实数a的取值范围.
画出不等式组表示的平面区域,并求出此不等式组的整数解.