(本小题满分13分)某巡逻艇在A处发现北偏东45相距9海里的C处有一艘走私船,正沿南偏东75的方向以10海里/小时的速度逃窜.(Ⅰ)若巡逻艇计划在正东方向进行拦截,问巡逻艇应行驶到什么位置进行设卡?(Ⅱ)若巡逻艇立即以14海里/小时的速度沿着直线方向追击,问经多少时间后巡逻艇恰追赶上该走私船?
在中,角对的边分别为,已知. (Ⅰ)若,求的取值范围; (Ⅱ)若,求面积的最大值.
已知抛物线的焦点为,点是抛物线上的一点,且其纵坐标为4,. (1)求抛物线的方程; (2)设点是抛物线上的两点,的角平分线与轴垂直,求的面积最大时直线的方程.
已知函数 (1)若是的极值点,求的极大值; (2)求实数的范围,使得恒成立.
已知正项数列满足:,数列的前项和为,且满足,. (1) 求数列和的通项公式; (2)设,数列的前项和为,求证:.
如图所示的多面体中, 是菱形,是矩形,面,. (1)求证:平; (2))若,求四棱锥的体积.