如图,在平面直角坐标系中, 的边 在 轴上, ,且线段 的长是方程 的根,过点 作 轴,垂足为 ,动点 以每秒 个单位长度的速度,从点 出发,沿线段 向点 运动,到达点 停止.过点 作 轴的垂线,垂足为 ,以 为边作正方形 ,点 在线段 上,设正方形 与 重叠部分的面积为 ,点 的运动时间为 .
(1)求点 的坐标;
(2)求 关于 的函数解析式,并写出自变量 的取值范围;
(3)当点 落在线段 上时,坐标平面内是否存在一点 ,使以 为顶点的四边形是平行四边形?若存在,直接写出点 的坐标;若不存在,请说明理由.
如图,已知二次函数的图象与 轴交于 和 两点,与 轴交于 ,对称轴为直线 ,直线 经过点 ,且与 轴交于点 ,与抛物线交于点 ,与对称轴交于点 .
(1)求抛物线的解析式和 的值;
(2)在 轴上是否存在点 ,使得以 为顶点的三角形与 相似,若存在,求出点 的坐标;若不存在,试说明理由;
(3)直线 上有 两点 在 的左侧 ,且 ,若将线段 在直线 上平移,当它移动到某一位置时,四边形 的周长会达到最小,请求出周长的最小值(结果保留根号).
在古代,智慧的劳动人民已经会使用“石磨”,其原理为在磨盘的边缘连接一个固定长度的“连杆”,推动“连杆”带动磨盘转动,将粮食磨碎,物理学上称这种动力传输工具为“曲线连杆机构”.
小明受此启发设计了一个“双连杆机构”,设计图如图①,两个固定长度的“连杆” 的连接点 在 上,当点 在 上转动时,带动点 分别在射线 上滑动, .当 与 相切时,点 恰好落在 上,如图②.请仅就图②的情形解答下列问题.
(1)求证: ;
(2)若 的半径为 ,求 的长.
如图,已知 是四边形 的外接圆,直线 相交于点 是弦 的中点,延长直线 交弦 于点 ,求证:
(1) ;
(2) .
如图,已知正方形 ,点 是 边上一点,将 沿直线 折叠,点 落在 处,连接 并延长,与 的平分线相交于点 ,与 分别相交于点 , ,连接 .
(1)求证:
(2)若 ,求点 到直线 的距离;
(3)当点 在 边上(端点除外)运动时, 的大小是否变化?为什么?
如图,直线 与 轴交于点 ,与 轴交于点 ,抛物线 经过 两点.
(1)求抛物线的解析式;
(2)如图,点 是直线 上方抛物线上的一动点,当 面积最大时,请求出点 的坐标和 面积的最大值?
如图,点 是等边三角形 内一点,且 ,若将 绕着点 逆时针旋转后得到 .
(1)求点 与点 之间的距离;
(2)求 的度数.
两个水管同时开始向一个空容器内注水.如图是 两个水管各自的注水量 与注水时间 之间的函数图象,已知 水管的注水速度是 , 小时后, 水管的注水量随时间的变化是一段抛物线,其顶点是 ,且注水 小时,容器刚好注满.请根据图象所提供的信息解答下列问题:
(1)直接写出 注水量 与注水时间 之间的函数解解析式,并注明自变量的取值范围;
__________( ),
(2)求容器的容量;
(3)根据图象,通过计算回答,当 时,直接写出 的取值范围.
在Rt 中, ,将 绕点 顺时针旋转得到 ,其中点 的对应点分别为点 .
(1)如图①,当点 落在 的延长线上时,求 的长;
(2)如图②,当点 落在 的延长线上时,连接 交 于点 ,求 的长;
(3)如图③,连接 ,直线 交 于点 ,点 为 的中点,连接 .在旋转过程中, 是否存在最小值?若存在,求出 的最小值;若不存在,请说明理由.
已知平面直角坐标系中,点 和直线 (其中 不全为0 ,则点 到直线 的距离 可用公式 来计算.
例如:求点 到直线 的距离,因为直线 可化为 ,其中 ,所以点 到直线 的距离为 .根据以上材料,解答下列问题:
(1)求点 到直线 的距离;
(2)在(1)的条件下, 的半径 ,判断 与直线 的位置关系,若相交,设其弦长为 ,求 的值;若不相交,说明理由.
如图①,在, 中,以下是小亮探究 与 之间关系的方法:
根据你掌握的三角函数知识.在图②)的锐角 中,探究 之间的关系,并写出探究过程.