在古代,智慧的劳动人民已经会使用“石磨”,其原理为在磨盘的边缘连接一个固定长度的“连杆”,推动“连杆”带动磨盘转动,将粮食磨碎,物理学上称这种动力传输工具为“曲线连杆机构”.
小明受此启发设计了一个“双连杆机构”,设计图如图①,两个固定长度的“连杆” AP , BP 的连接点 P 在 ⊙ O 上,当点 P 在 ⊙ O 上转动时,带动点 A , B 分别在射线 OM , ON 上滑动, OM ⊥ ON .当 AP 与 ⊙ O 相切时,点 B 恰好落在 ⊙ O 上,如图②.请仅就图②的情形解答下列问题.
(1)求证: ∠ PAO = 2 ∠ PBO ;
(2)若 ⊙ O 的半径为 5 , AP = 20 3 ,求 BP 的长.
如图①,在矩形ABCD中,AB=l0cm,BC=8cm,点P从A发,沿路线运动,到D停止;点从出发,沿路线运动,到停止.若点同时出发,点的速度为点的速度为,秒时点点同时改变速度,点的速度变为bcm/s,点的速度变为.图②是点出发x秒后的面积与的函数关系图象;图③点出发秒后的面积的函数关系图象. (1)观察下图,求、c的值及点的速度的值; (2)设点离开点的路程为点到还需走的路程为请分别写出动点改变速度后与出发后的运动时间的函数关系式,并求出相遇时x的值; (3)请直接写出当点出发多少秒时,点点在运动路线上相距的路程为25cm.
某商场计划采购甲、乙、丙三种型号的“格力”牌空调共25台.三种型号的空调进价和售价如下表: 商场计划投入总资金5万元,所购进的甲、丙型号空调数量相同,乙型号数量不超过甲型号数量的一半.若设购买甲型号空调台,所有型号空调全部售出后获得的总利润为元. (1)求与之间的函数关系式. (2)商场如何采购空调才能获得最大利润? (3)由于原材料上涨,商场决定将丙型号空调的售价提高元(),其余型号售价不变,则商场又该如何采购才能获得最大利润?
地铁开通后,为响应市政府“绿色出行”的号召,家住沙区的小王上班由自驾车上班改为乘坐地铁.已知小王家距上班地点18千米,他用乘地铁的方式平均每小时行驶的路程比他用自驾车的方式平均每小时行驶的路程的2倍还多9千米,他从家出发到达上班地点,乘地铁所用时间是自驾车方式所用时间的.小王用自驾车方式上班平均每小时行驶多少千米?
如图,反比例函数与一次函数的图象交于点,和点,. (1)求反比例函数和一次函数的解析式; (2)求的面积.
先化简,再求值:,其中是不等式组的整数解.