如图,已知 ⊙ O 是四边形 ABCD 的外接圆,直线 AD , BC 相交于点 E , F 是弦 CD 的中点,延长直线 EF 交弦 AB 于点 G ,求证:
(1) ED ⋅ EA = EC ⋅ EB ;
(2) AG : GB = A E 2 : B E 2 .
已知 △ A B C ,利用直尺和圆规,根据下列要求作图(保留作图痕迹,不要求写作法),并根据要求填空: (1)作 ∠ A B C 的平分线 B D 交 A C 于点 D ; (2)作线段 B D 的垂直平分线交 A B 于点 E ,交 B C 于点 F .由 1 、 2 可得:线段 E F 与线段 B D 的关系为
如图,在平面直角坐标系中,O为坐标原点,⊙C的圆心坐标为(-2,-2),半径为.函数y=-x+2的图象与x轴交于点A,与y轴交于点B,点P为AB上一动点(1)连接CO,求证:CO⊥AB;(2)若△POA是等腰三角形,求点P的坐标;(3)当直线PO与⊙C相切时,求∠POA的度数;当直线PO与⊙C相交时,设交点为E、F,点M为线段EF的中点,令PO=t,MO=s,求s与t之间的函数关系,并写出t的取值范围.
如果一条直线把一个平面图形的面积分成相等的两部分,我们把这条直线称为这个平面图形的一条面积等分线.如:平行四边形的一条对线所在的直线就是平行四边形的一条面积等分线.(1)三角形的中线、高线、角平分线分别所在的直线一定是三角形的面积等分线的有___;(2)如图1,梯形ABCD中,AB∥DC,如果延长DC到E,使CE=AB,连接AE,那么有S梯形ABCD=S△ADE.请你给出这个结论成立的理由,并过点A作出梯形ABCD的面积等分线(不写作法,保留作图痕迹);(3)如图,四边形ABCD中,AB与CD不平行,S△ADC>S△ABC,过点A能否作出四边形ABCD的面积等分线?若能,请画出面积等分线,并给出证明;若不能,说明理由.
如图,大海中有A和B两个岛屿,为测量它们之间的距离,在海岸线PQ上点E处测得∠AEP=74°,∠BEQ=30°;在点F处测得∠AFP=60°,∠BFQ=60°,EF=1km.(1)判断AB、AE的数量关系,并说明理由;(2)求两个岛屿A和B之间的距离(结果精确到0.1km).(参考数据:≈1.73,sin74°≈,cos74°≈0.28,tan74°≈3.49,sin76°≈0.97,cos76°≈0.24)
我市某工艺品厂生产一款工艺品.已知这款工艺品的生产成本为每件60元.经市场调研发现:该款工艺品每天的销售量y(件)与售价x(元)之间存在着如下表所示的一次函数关系.
(利润=(售价-成本价)×销售量)(1)求销售量y(件)与售价x(元)之间的函数关系式;(2)你认为如何定价才能使工艺品厂每天获得的利润为40 000 元?