某中学为了了解全校的耗电情况抽查了10天中全校每天的耗电量,数据如下表: 度数 90 93 102 113 114 120 天数 1 1 2 3 1 2 (1)写出上表中数据的众数和平均数. (2)根据上题获得的数据,估计该校一个月的耗电量(按30天计算). (3)若当地每度电的价格是0.5元,写出该校应付电费y(元)与天数x(x取正整数,单位:天)的函数关系式.
已知矩形长和宽分别为4和2,是否存在另一个矩形,它的周长和面积分别是已知矩形的?若存在请计算这个矩形的两边长,若不存在请说明理由.
小颖为班级联欢会设计了一个“配紫色”游戏:下面是两个可以自由转动的转盘,每个转盘被分 成相等的几个扇形.游戏规则是:游戏者同时转动两个转盘,如果转盘 A 转出了红色,转盘 B 转出 了蓝色,那么配成了紫色. (1)利用树状图或列表的方法计算配成紫色的概率. (2)小红和小亮参加这个游戏,并约定配成紫色小红赢,两个转盘转出同种颜色,小亮赢.这个约定对双方公平吗?说明理由.
如图,将△ABC沿AB方向平移得到△DEF,△ABC与△DEF重叠部分(图中阴影部分)的面积是△ABC的.已知BC=3,求△ABC平移的距离.
(1)解方程:4x2-8x-3=0 (2)求抛物线与x轴和y轴的交点坐标.
已知:如图,线段a.求作:正方形ABCD,使正方形ABCD的对角线AC=a.