如图,已知正方形 ABCD ,点 E 是 BC 边上一点,将 △ ABE 沿直线 AE 折叠,点 B 落在 F 处,连接 BF 并延长,与 ∠ DAF 的平分线相交于点 H ,与 AE , CD 分别相交于点 G , M ,连接 HC .
(1)求证: AG = GH ;
(2)若 AB = 3 , BE = 1 ,求点 D 到直线 BH 的距离;
(3)当点 E 在 BC 边上(端点除外)运动时, ∠ BHC 的大小是否变化?为什么?
在边长为1的方格纸中建立直角坐标系,如图所示,O、A、B三点均为格点.(1)直接写出线段OB的长;(2)将△OAB绕点O沿逆时针方向旋转90°得到△OA′B′。请你画出△OA′B′,并求在旋转过程中,点B所经过的路径弧BB′的长度.
[问题提出]学习了三角形全等的判定方法(即“SAS”,“ASA”,“AAS”,“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.[初步思考]我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E.然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.[深入探究]第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E=90°,根据________,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B,∠E都是钝角.求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B,∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹).(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接填写结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B,∠E都是锐角,若________,则△ABC≌△DEF.
将1、、、、按如图方式排列,若规定(m、n)表示第m排从左向右第n个数,则(6,5)与(13,6)表示的两数之积是____.
如图,已知线段与相交于点,联结,为的中点,为的中点,联结.若∠A=∠D,∠OEF=∠OFE,求证:AB=DC.
为奖励“我的中国梦”暑期系列实践活动的获奖学生,学校准备在某商店购买A,B两种文具作为奖品,已知一件A种文具的单价比B种文具的单价便宜4元,而用300元买A种文具的件数是用200元买B种文具的件数的2倍.(1)求A种文具的单价;(2)根据需要,学校准备在该商店购买A,B两种文具共200件,其中A种文具的件数不多于B种文具件数的3倍.为了节约经费,应购买A,B两种文具各多少件?