已知平面直角坐标系中,点 P x 0 , y 0 和直线 Ax + By + C = 0 (其中 A , B 不全为0 ) ,则点 P 到直线 Ax + By + C = 0 的距离 d 可用公式 d = A x 0 + B y 0 + C A 2 + B 2 来计算.
例如:求点 P ( 1 , 2 ) 到直线 y = 2 x + 1 的距离,因为直线 y = 2 x + 1 可化为 2 x - y + 1 = 0 ,其中 A = 2 , B = - 1 , C = 1 ,所以点 P ( 1 , 2 ) 到直线 y = 2 x + 1 的距离为 d = A x 0 + B y 0 + C A 2 + B 2 = | 2 × 1 + ( - 1 ) × 2 + 1 | 2 2 + ( - 1 ) 2 = 1 5 = 5 5 .根据以上材料,解答下列问题:
(1)求点 M ( 0 , 3 ) 到直线 y = 3 x + 9 的距离;
(2)在(1)的条件下, ⊙ M 的半径 r = 4 ,判断 ⊙ M 与直线 y = 3 x + 9 的位置关系,若相交,设其弦长为 n ,求 n 的值;若不相交,说明理由.
小明在进行两个多项式的乘法运算时(其中的一个多项式是b﹣1),把“乘以(b﹣1)”错看成“除以(b﹣1)”,结果得到(2a﹣b),请你帮小明算算,另一个多项式是多少?
如图,有足够多的边长为a的大正方形、长为a宽为b的长方形以及边长为b的小正方形.(1)取其中的若干个(三种图形都要取到)拼成一个长方形,使其面积为(a+b)(a+2b),画出图形,并根据图形回答(a+b)(a+2b)= .(2)取其中的若干个(三种图形都要取到)拼成一个长方形,使其面积为a2+5ab+4b2,①需要A类卡片 张、B类卡片 张、C类卡片 张.②可将多项式a2+5ab+4b2分解因式为 .
已知(x2+mx+n)(x+1)的结果中不含x2项和x项,求m,n的值.
我们知道多项式的乘法可以利用图形的面积进行解释,如(2a+b)(a+b)=2a2+3ab+b2就能用图1或图2等图形的面积表示:(1)请你写出图3所表示的一个等式: .(2)试画出一个图形,使它的面积能表示:(a+b)(a+3b)=a2+4ab+3b2.
心理学家研究发现,在一节45分钟的课中,学生的注意力随教师讲课的时间的变化而变化,开始学生的注意力逐渐增强,中间学生的注意力保持稳定的状态,随后开始分散,经实验学生的注意力指数y随时间x(分钟)的变化规律如图所示.(1)一位教师为了达到最好的上课效果,准备课前复习,要求学生的注意力指数至少达到30时,开始上新课,问他应该复习多长时间?(2)如果(1)的这位教师本节新课内容需要22分钟,为了使学生的听课效果最好,问这位教师能否在学生听课效果最好时,讲完新课内容?