如图,直线 y = - 3 4 x + 3 与 x 轴交于点 C ,与 y 轴交于点 B ,抛物线 y = a x 2 + 3 4 x + c 经过 B , C 两点.
(1)求抛物线的解析式;
(2)如图,点 E 是直线 BC 上方抛物线上的一动点,当 △ BEC 面积最大时,请求出点 E 的坐标和 △ BEC 面积的最大值?
如图①,正方形AEFG的边长为1,正方形ABCD的边长为3,且点F在AD上. (1)求; (2)把正方形AEFG绕点A按逆时针方向旋转45°得图②,求图②中的; (3)把正方形AEFG绕点A旋转一周,在旋转的过程中,存在最大值与最小值,请直接写出最大值,最小值.
某旅馆有客房120间,每间房的日租金为160元,每天都客满.旅馆装修后要提高租金,经市场调查,如果一间客房日租金每增加10元,则客房每天少出租6间,不考虑其他因素,旅馆将每间客房的日租金提高到多少元时,客房日租金的总收入最高?比装修前日租金的总收入增加多少元?
如图,已知反比例函数()与一次函数()相交于A、B两点,AC⊥轴于点C,若△OAC的面积为1,且tan∠AOC=2. (1)求反比例函数与一次函数的表达式; (2)请直接写出B点的坐标,并指出当为何值时,反比例函数的值小于一次函数的值.
住在郑东新区的小明知道“中原第一高楼”有多高,他登上了附近的另一座高层酒店的顶层某处.已知小明所处位置距离地面有160米高,测得“中原第一高楼”顶部的仰角为37°,测得“中原第一高楼”底部的俯角为45°,请你用初中数学知识帮小明解决这个问题.(请你画出示意图,并说明理由)(参考数据:)
如图1,小颖将一组平行的纸条折叠,点A、B分别落在在A′,B′处,线段FB′与AD交于点M. (1)试判断△MEF的形状,并证明你的结论; (2)如图②,将纸条的另一部分CFMD沿MN折叠,点C,D分别落在C′,D′处,且使MD′经过点F,试判断四边形MNFE的形状,并证明你的结论; (3)当∠BFE=_____度时,四边形MNFE是菱形.