如图,四边形 内接于 , 是 的直径, 与 交于点 , 切 于点 .
(1)求证: ;
(2)若 , ,求证: .
在 中, , 是中线, ,一个以点 为顶点的 角绕点 旋转,使角的两边分别与 、 的延长线相交,交点分别为点 、 , 与 交于点 , 与 交于点 .
(1)如图1,若 ,求证: ;
(2)如图2,在 绕点 旋转的过程中,试证明 恒成立;
(3)若 , ,求 的长.
如图,在直角三角形 中, ,点 是 的内心,
的延长线和三角形 的外接圆 相交于点 ,连接 .
(1)求证: ;
(2)过点 作 的平行线交 、 的延长线分别于点 、 ,已知 ,圆 的直径为5.
①求证: 为圆 的切线;
②求 的长.
如图, 在正方形 中, , 分别为 , 边上的点, , 交于点 ,且 .
(1) 求证: ;
(2) 若 , ,求正方形 的面积 .
如图,在正方形 中, 为 的中点,延长 至 ,使 ,过 作 ,垂足为 ,过 作 的垂线交 的延长线于点 .
(1)求证: ;
(2)求证:四边形 是正方形.
矩形 中, , .分别以 , 所在直线为 轴, 轴,建立如图1所示的平面直角坐标系. 是 边上一个动点(不与 , 重合),过点 的反比例函数 的图象与边 交于点 .
(1)当点 运动到边 的中点时,求点 的坐标;
(2)连接 ,求 的正切值;
(3)如图2,将 沿 折叠,点 恰好落在边 上的点 处,求此时反比例函数的解析式.
如图, 为 的直径, , 分别切 于点 , , 交 的延长线于点 , 的延长线交 于点 , 于点 .
(1)求证: ;
(2)若 , ,求 的长.
(1)如图1,在正方形 中,点 , 分别在 , 上, 于点 ,求证: ;
(2)如图2,将 (1)中的正方形 改为矩形 , , , 于点 ,探究 与 的数量关系,并证明你的结论.
如图,在 中, ,以 为直径的 分别交 、 于点 、 ,点 在 的延长线上,且 .
(1)求证: 是 的切线;
(2)若 的直径为4, ,求 .
如图,在 中, , 平分 交 于点 , 为 上一点,经过点 , 的 分别交 , 于点 , ,连接 交 于点 .
(1)求证: 是 的切线;
(2)设 , ,试用含 , 的代数式表示线段 的长;
(3)若 , ,求 的长,
已知:如图,在 中, ,以 为直径作 分别交 , 于点 , ,连接 和 ,过点 作 ,垂足为 ,交 于点 .
(1)求证: ;
(2)若 ,求线段 的长;
(3)在(2)的条件下,求 的面积.
在 中, , 是 上一点,连接 ,作 ,使 ,且 ,过点 作 交 于 ,连接 .
(1)如图1.
①连接 ,求证:
②若 是线段 的中点,且 , ,求 的长;
(2)如图2,若点 在线段 的延长线上,且四边形 是矩形,当 , 时,求 的长(用含 , 的代数式表示).
如图, 是 的直径,弦 ,垂足为 ,连接 ,过 上一点 作 交 的延长线于点 ,连接 交 于点 ,且 ,连接 .
(1)求证: ;
(2)求证: 是 的切线;
(3)延长 交 的延长线于点 ,若 , ,求 的值.
通过对下面数学模型的研究学习,解决问题.
【模型呈现】
如图,在 , ,将斜边 绕点 顺时针旋转 得到 ,过点 作 于点 ,可以推理得到 ,进而得到 , .
我们把这个数学模型称为“ 型”.
推理过程如下:
【模型应用】
如图,在 内接于 , , ,将斜边 绕点 顺时针旋转一定的角度得到 ,过点 作 于点 , , ,连接 交 于点 .
(1)求证: 是 的切线;
(2)连接 交 于点 ,连接 .求证: .