如图, 是 的直径, , 是 上两点, 是 的中点,过点 作 的垂线,垂足是 .连接 交 于点 .
(1)求证: 是 的切线;
(2)若 ,求 的值.
如图, 是以 为直径的 上一点,过点 的切线 交 的延长线于点 ,过点 作 交 的延长线于点 ,垂足为点 .
(1)求证: ;
(2)若 的直径 为9, .
①求线段 的长;
②求线段 的长.
如图,已知 是 的直径, 为 上一点, 的角平分线交 于点 , 在直线 上,且 ,垂足为 ,连接 、 .
(1)求证: 是 的切线;
(2)若 , 的半径为3,求 的长.
如图,在 中, , 为 边上一点,以 为圆心, 长为半径的 与 边相切于点 ,交 于点 .
(1)求证: ;
(2)连接 ,若 , ,求线段 的长.
如图,在 中,点 、 分别在边 、 上,且 .
(1)探究四边形 的形状,并说明理由;
(2)连接 ,分别交 、 于点 、 ,连接 交 于点 .若 , ,求 的长.
在古代,智慧的劳动人民已经会使用“石磨”,其原理为在磨盘的边缘连接一个固定长度的“连杆”,推动“连杆”带动磨盘转动,将粮食磨碎,物理学上称这种动力传输工具为“曲柄连杆机构”.
小明受此启发设计了一个“双连杆机构”,设计图如图1,两个固定长度的“连杆” , 的连接点 在 上,当点 在 上转动时,带动点 , 分别在射线 , 上滑动, .当 与 相切时,点 恰好落在 上,如图2.
请仅就图2的情形解答下列问题.
(1)求证: ;
(2)若 的半径为5, ,求 的长.
如图, 是 的外接圆, 是 的直径, 是 延长线上一点,连接 , ,且 .
(1)求证: 是 的切线;
(2)若 , ,求 的长.
甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量.下面是他们通过测量得到的一些信息:甲组:如图(1),测得一根直立于平地,长为80cm的竹竿的影长为60cm;乙组:如图(2),测得学校旗杆的影长为900cm;丙组:如图(3),测得校园景灯(灯罩视为圆柱体,灯杆粗细忽略不计)的灯罩部分影长HQ 为90cm,灯杆被阳光照射到的部分PG长40cm,未被照射到的部分KP长24cm。
(1)请根据甲、乙两组得到的信息计算出学校旗杆的高度;
(2)请根据甲、丙两组得到的信息,求:①灯罩底面半径MK的长; ②灯罩的主视图面积。