初中数学

如图,已知点D是△ABC的边AC上的一点,连接BD.∠ABD=∠C,AB=6,AD=4.

(1)求证:△ABD∽△ACB;
(2)求线段CD的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

定义:有三个内角相等的四边形叫三等角四边形.

(1)三等角四边形 ABCD 中, A = B = C ,求 A 的取值范围;

(2)如图,折叠平行四边形纸片 DEBF ,使顶点 E F 分别落在边 BE BF 上的点 A C 处,折痕分别为 DG DH .求证:四边形 ABCD 是三等角四边形.

(3)三等角四边形 ABCD 中, A = B = C ,若 CB = CD = 4 ,则当 AD 的长为何值时, AB 的长最大,其最大值是多少?并求此时对角线 AC 的长.

来源:2016年浙江省台州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

基本模型
如图1,点A,F,B在同一直线上,若∠A=∠B=∠EFC=90°,易得△AFE∽△BCF.
(1)模型拓展:
如图2,点A,F,B在同一直线上,若∠A=∠B=∠EFC,求证:△AFE∽△BCF;
(2)拓展应用:如图3,AB是半圆⊙O的直径,弦长AC=BC=4,E,F分别是AC,AB上的一点,若∠CFE=45°.若设AE=y,BF=x,求出y与x的函数关系式及y的最大值;

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在△ABC中,∠ABC=90°,以BC为直径作⊙O,交ACDE CD ̂ 的中点,连接CEBEBEACF

(1)求证:ABAF

(2)若AB=3,BC=4,求CE的长.

来源:2016年广西河池市中考数学试卷
  • 更新:2021-03-05
  • 题型:未知
  • 难度:未知

如图,已知AB为⊙O的直径,AC为⊙O的切线,OC交⊙O于点DBD的延长线交AC于点E

(1)求证:∠1=∠CAD

(2)若AEEC=2,求⊙O的半径.

来源:2016年广西百色市中考数学试卷
  • 更新:2021-03-05
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, CA = CB BC A 相切于点 D ,过点 A AC 的垂线交 CB 的延长线于点 E ,交 A 于点 F ,连结 BF

(1)求证: BF A 的切线.

(2)若 BE = 5 AC = 20 ,求 EF 的长.

来源:2021年浙江省衢州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,⊙ O是△ ABC的外接圆, BC是⊙ O的直径,∠ ABC=30°,过点 B作⊙ O的切线 BD,与 CA的延长线交于点 D,与半径 AO的延长线交于点 E,过点 A作⊙ O的切线 AF,与直径 BC的延长线交于点 F

(1)求证:△ ACF∽△ DAE

(2)若 S AOC = 3 4 ,求 DE的长;

(3)连接 EF,求证: EF是⊙ O的切线.

来源:2016年广东省中考数学试卷
  • 更新:2021-02-24
  • 题型:未知
  • 难度:未知

如图,已知 Rt Δ ABC 中, C = 90 °

(1)请按如下要求完成尺规作图(不写作法,保留作图痕迹).

①作 BAC 的角平分线 AD ,交 BC 于点 D

②作线段 AD 的垂直平分线 EF AB 相交于点 O

③以点 O 为圆心,以 OD 长为半径画圆,交边 AB 于点 M

(2)在(1)的条件下,求证: BC O 的切线;

(3)若 AM = 4 BM AC = 10 ,求 O 的半径.

来源:2021年山东省烟台市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,在半径为 5 cm O 中, AB O 的直径, CD 是过 O 上一点 C 的直线,且 AD DC 于点 D AC 平分 BAD E BC 的中点, OE = 3 cm

(1)求证: CD O 的切线;

(2)求 AD 的长.

来源:2021年湖南省怀化市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图, AB O 的直径, C O 上一点, AD CE ,垂足为 D AC 平分 DAB

(1)求证: CE O 的切线;

(2)若 AD = 4 cos CAB = 4 5 ,求 AB 的长.

来源:2020年云南省中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图, ΔABC 内接于 O CD 平分 ACB O D ,过点 D PQ / / AB 分别交 CA CB 延长线于 P Q ,连接 BD

(1)求证: PQ O 的切线;

(2)求证: B D 2 = AC · BQ

(3)若 AC BQ 的长是关于 x 的方程 x + 4 x = m 的两实根,且 tan PCD = 1 3 ,求 O 的半径.

来源:2017年四川省达州市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,已知⊙ O的半径为2, AB为直径, CD为弦. ABCD交于点 M,将 CD ̂ 沿 CD翻折后,点 A与圆心 O重合,延长 OAP,使 APOA,连接 PC

(1)求 CD的长;

(2)求证: PC是⊙ O的切线;

(3)点 G ADB ̂ 的中点,在 PC延长线上有一动点 Q,连接 QGAB于点 E.交 BC ̂ 于点 FFBC不重合).问 GEGF是否为定值?如果是,求出该定值;如果不是,请说明理由.

来源:2016年广东省深圳市中考数学试卷
  • 更新:2021-02-24
  • 题型:未知
  • 难度:未知

如图,点分别为边上两点,且

(1)试说明:
(2)若,求的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

数学活动--求重叠部分的面积.
问题情境:数学活动课上,老师出示了一个问题:
如图1,将两块全等的直角三角形纸片△ABC和△DEF叠放在一起,其中∠ACB=∠E=90°,BC=DE=6,AC=FE=8,顶点D与边AB的中点重合.

(1)若DE经过点C,DF交AC于点G,求重叠部分(△DCG)的面积;
(2)合作交流:“希望”小组受问题(1)的启发,将△DEF绕点D旋转,使DE⊥AB交AC于点H,DF交AC于点G,如图2,求重叠部分(△DGH)的面积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在菱形 ABCD 中, O 是对角线 BD 上一点 ( BO > DO ) OE AB ,垂足为 E ,以 OE 为半径的 O 分别交 DC 于点 H ,交 EO 的延长线于点 F EF DC 交于点 G

(1)求证: BC O 的切线;

(2)若 G OF 的中点, OG = 2 DG = 1

①求 HE ̂ 的长;

②求 AD 的长.

来源:2021年湖北省宜昌市中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

初中数学相似三角形的判定与性质解答题