如图,已知点D是△ABC的边AC上的一点,连接BD.∠ABD=∠C,AB=6,AD=4.
(1)求证:△ABD∽△ACB;
(2)求线段CD的长.
定义:有三个内角相等的四边形叫三等角四边形.
(1)三等角四边形 中, ,求 的取值范围;
(2)如图,折叠平行四边形纸片 ,使顶点 , 分别落在边 , 上的点 , 处,折痕分别为 , .求证:四边形 是三等角四边形.
(3)三等角四边形 中, ,若 ,则当 的长为何值时, 的长最大,其最大值是多少?并求此时对角线 的长.
基本模型
如图1,点A,F,B在同一直线上,若∠A=∠B=∠EFC=90°,易得△AFE∽△BCF.
(1)模型拓展:
如图2,点A,F,B在同一直线上,若∠A=∠B=∠EFC,求证:△AFE∽△BCF;
(2)拓展应用:如图3,AB是半圆⊙O的直径,弦长AC=BC=4,E,F分别是AC,AB上的一点,若∠CFE=45°.若设AE=y,BF=x,求出y与x的函数关系式及y的最大值;
如图,在△ABC中,∠ABC=90°,以BC为直径作⊙O,交AC于D,E为 的中点,连接CE,BE,BE交AC于F.
(1)求证:AB=AF;
(2)若AB=3,BC=4,求CE的长.
如图,已知AB为⊙O的直径,AC为⊙O的切线,OC交⊙O于点D,BD的延长线交AC于点E.
(1)求证:∠1=∠CAD;
(2)若AE=EC=2,求⊙O的半径.
如图,在 中, , 与 相切于点 ,过点 作 的垂线交 的延长线于点 ,交 于点 ,连结 .
(1)求证: 是 的切线.
(2)若 , ,求 的长.
如图,⊙ O是△ ABC的外接圆, BC是⊙ O的直径,∠ ABC=30°,过点 B作⊙ O的切线 BD,与 CA的延长线交于点 D,与半径 AO的延长线交于点 E,过点 A作⊙ O的切线 AF,与直径 BC的延长线交于点 F.
(1)求证:△ ACF∽△ DAE;
(2)若 ,求 DE的长;
(3)连接 EF,求证: EF是⊙ O的切线.
如图,已知 中, .
(1)请按如下要求完成尺规作图(不写作法,保留作图痕迹).
①作 的角平分线 ,交 于点 ;
②作线段 的垂直平分线 与 相交于点 ;
③以点 为圆心,以 长为半径画圆,交边 于点 .
(2)在(1)的条件下,求证: 是 的切线;
(3)若 , ,求 的半径.
如图,在半径为 的 中, 是 的直径, 是过 上一点 的直线,且 于点 , 平分 , 是 的中点, .
(1)求证: 是 的切线;
(2)求 的长.
如图, 为 的直径, 为 上一点, ,垂足为 , 平分 .
(1)求证: 是 的切线;
(2)若 , ,求 的长.
如图, 内接于 , 平分 交 于 ,过点 作 分别交 、 延长线于 、 ,连接 .
(1)求证: 是 的切线;
(2)求证: ;
(3)若 、 的长是关于 的方程 的两实根,且 ,求 的半径.
如图,已知⊙ O的半径为2, AB为直径, CD为弦. AB与 CD交于点 M,将 沿 CD翻折后,点 A与圆心 O重合,延长 OA至 P,使 AP= OA,连接 PC
(1)求 CD的长;
(2)求证: PC是⊙ O的切线;
(3)点 G为 的中点,在 PC延长线上有一动点 Q,连接 QG交 AB于点 E.交 于点 F( F与 B、 C不重合).问 GE• GF是否为定值?如果是,求出该定值;如果不是,请说明理由.
数学活动--求重叠部分的面积.
问题情境:数学活动课上,老师出示了一个问题:
如图1,将两块全等的直角三角形纸片△ABC和△DEF叠放在一起,其中∠ACB=∠E=90°,BC=DE=6,AC=FE=8,顶点D与边AB的中点重合.
(1)若DE经过点C,DF交AC于点G,求重叠部分(△DCG)的面积;
(2)合作交流:“希望”小组受问题(1)的启发,将△DEF绕点D旋转,使DE⊥AB交AC于点H,DF交AC于点G,如图2,求重叠部分(△DGH)的面积.