矩形 AOBC 中, OB = 4 , OA = 3 .分别以 OB , OA 所在直线为 x 轴, y 轴,建立如图1所示的平面直角坐标系. F 是 BC 边上一个动点(不与 B , C 重合),过点 F 的反比例函数 y = k x ( k > 0 ) 的图象与边 AC 交于点 E .
(1)当点 F 运动到边 BC 的中点时,求点 E 的坐标;
(2)连接 EF ,求 ∠ EFC 的正切值;
(3)如图2,将 ΔCEF 沿 EF 折叠,点 C 恰好落在边 OB 上的点 G 处,求此时反比例函数的解析式.
.已知关于x的方程 (1)求证:不论k取什么实数值,这个方程总有实数根; (2)若等腰三角形ABC的一边长,另两边的长b,c恰好是这个方程的两根,求△ABC的周长。
. 阅读材料: 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+2=(1+),善于思考的小明进行了以下探索: 设a+b=(m+n)(其中a、b、m、n均为正整数),则有a+b=m2+2n2+2mn, ∴a= m2+2n2,b=2mn.这样小明就找到了一种把部分a+b的式子化为平方式的方法. 请你仿照小明的方法探索并解决下列问题: (1)当a、b、m、n均为正整数时,若a+b=(m+n),用含m、n的式子分别表示a、b,得:a=,b= ; (2)利用所探索的结论,找一组正整数a、b、m、n填空:+ =(+ ); (3)若a+4=(m+n),且a、m、n均为正整数,求a的值.
先化简再计算:,其中x是一元二次方程的正数根.
A,B两地间的距离为15千米,甲从A地出发步行前往B地,20分钟后,乙从B地出发骑车前往A地,且乙骑车比甲步行每小时多走10千米。乙到达A地后停留40分钟,然后骑车按原路原速返回,结果甲、乙两人同时到达B地。请你就“甲从A地到B地步行所用时间”或“甲步行的速度”提出一个用分式方程解决的问题,并写出解题过程。
≠(公式法)