如图,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.P为BC的中点,动点Q从点P出发,沿射线PC方向以2cm/s的速度运动,以P为圆心,PQ长为半径作圆.设点Q运动的时间为t s.(1)当t=1.2时,判断直线AB与⊙P的位置关系,并说明理由;(2)已知⊙O为△ABC的外接圆.若⊙P与⊙O相切,求t的值.
(1)如图1,将直角的顶点E放在正方形ABCD的对角线AC上,使角的一边交CD于点F,另一边交CB或其延长线于点G,求证:EF=EG;(2)如图2,将(1)中的“正方形ABCD”改成“矩形ABCD”,其他条件不变.若AB=m,BC=n,试求的值;(3)如图3,将直角顶点E放在矩形ABCD的对角线交点,EF、EG分别交CD与CB于点F、G,且EC平分∠FEG.若AB=2,BC=4,求EG、EF的长.
小明早晨从家里出发匀速步行去学校,路上一共用时20分钟.小明的妈妈在小明出发后10分钟,发现小明的数学课本没带,于是她带上课本立即匀速骑车按小明上学的路线追赶小明,结果与小明同时到达学校.设小明从家到学校的过程中,出发t分钟时,他和妈妈所在的位置与家的距离分别为s1(千米)和s2(千米),其中s1(千米)与t(分钟)之间的函数关系的图象为图中的折线段OA-AB.(1)请解释图中线段AB的实际意义;(2)试求出小明从家到学校一共走过的路程;(3)在所给的图中画出s2(千米)与t(分钟)之间函数关系的图象(给相关的点标上字母,指出对应的坐标),并指出图象的形状.
高淳区去年螃蟹放养面积为20万亩,每亩产量为40kg,为满足市场需要,今年该区扩大了放养面积,并且全部放养了高产的新品种螃蟹.已知今年螃蟹的总产量为1500万kg,且螃蟹放养面积的增长率是亩产量的增长率的2倍,求该区今年螃蟹的亩产量.
如图,AB为⊙O直径,C、D为⊙O上不同于A、B的两点,∠ABD=2∠BAC.过点C作CE⊥DB,垂足为E,直线AB与CE相交于F点.(1)求证:CF为⊙O的切线;(2)若⊙O的半径为cm,弦BD的长为3cm,求CF的长.
已知二次函数y=ax2+bx+c中自变量x和函数值y的部分对应值如下表:
(1)求该二次函数的函数关系式;(2)在所给的直角坐标系中画出此函数的图象;(3)求出y≤10时自变量x的取值范围(可以结合图象说理).