背景:点 在反比例函数 的图象上, 轴于点 , 轴于点 ,分别在射线 , 上取点 , ,使得四边形 为正方形.如图1,点 在第一象限内,当 时,小李测得 .
探究:通过改变点 的位置,小李发现点 , 的横坐标之间存在函数关系.请帮助小李解决下列问题.
(1)求 的值.
(2)设点 , 的横坐标分别为 , ,将 关于 的函数称为" 函数".如图2,小李画出了 时" 函数"的图象.
①求这个" 函数"的表达式.
②补画 时" 函数"的图象,并写出这个函数的性质(两条即可).
③过点 作一直线,与这个" 函数"图象仅有一个交点,求该交点的横坐标.
已知在平面直角坐标系 中,点 是反比例函数 图象上的一个动点,连结 , 的延长线交反比例函数 的图象于点 ,过点 作 轴于点 .
(1)如图1,过点 作 轴,于点 ,连接 .
①若 ,求证:四边形 是平行四边形;
②连结 ,若 ,求 的面积.
(2)如图2,过点 作 ,交反比例函数 的图象于点 ,连结 .试探究:对于确定的实数 ,动点 在运动过程中, 的面积是否会发生变化?请说明理由.
如图,一次函数 与反比例函数 的图象交于点 , .
(1)求反比例函数和一次函数的解析式;
(2)判断点 是否在一次函数 的图象上,并说明理由;
(3)写出不等式 的解集.
已知反比例函数 的图象经过点 .
(1)求该反比例函数的表达式;
(2)如图,在反比例函数 的图象上点 的右侧取点 ,过点 作 轴的垂线交 轴于点 ,过点 作 轴的垂线交直线 于点 .
①过点 ,点 分别作 轴, 轴的垂线,两线相交于点 ,求证: , , 三点共线;
②若 ,求证: .
如图,正比例函数 与反比例函数 的图象交于点 ,过点 作 轴于点 , ,点 在线段 上,且 .
(1)求 的值及线段 的长;
(2)点 为 点上方 轴上一点,当 与 的面积相等时,请求出点 的坐标.
如图,过 点的直线 与 轴, 轴分别交于点 , 两点,且 ,过点 作 轴,垂足为点 ,交反比例函数 的图象于点 ,连接 , 的面积为6.
(1)求 值和点 的坐标;
(2)如图,连接 , ,点 在直线 上,且位于第二象限内,若 的面积是 面积的2倍,求点 的坐标.
如图, 中, , ,点 ,点 ,反比例函数 的图象经过点 .
(1)求反比例函数的解析式;
(2)将直线 向上平移 个单位后经过反比例函数 图象上的点 ,求 , 的值.
阅读理解:
在平面直角坐标系中,点 的坐标为 , ,点 的坐标为 , ,且 , ,若 、 为某矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为 、 的"相关矩形".如图1中的矩形为点 、 的"相关矩形".
(1)已知点 的坐标为 .
①若点 的坐标为 ,则点 、 的"相关矩形"的周长为 ;
②若点 在直线 上,且点 、 的"相关矩形"为正方形,求直线 的解析式;
(2)已知点 的坐标为 ,点 的坐标为 若使函数 的图象与点 、 的"相关矩形"有两个公共点,直接写出 的取值.
小欣在学习了反比例函数的图象与性质后,进一步研究了函数 的图象与性质.其研究过程如下:
(1)绘制函数图象
①列表:如表是 与 的几组对应值,其中 ;
|
|
|
|
|
|
|
|
|
0 |
1 |
2 |
|
|
|
|
|
|
|
|
3 |
2 |
|
|
|
|
②描点:根据表中的数值描点 ,请补充描出点 ;
③连线:用平滑的曲线顺次连接各点,请把图象补充完整.
(2)探究函数性质
判断下列说法是否正确(正确的填“ ”,错误的填“ ”
①函数值 随 的增大而减小: .
②函数图象关于原点对称: .
③ 函数图象与直线 没有交点: .
如图,反比例函数 的图象与一次函数 的图象相交于 , 两点.
(1)求反比例函数和一次函数的解析式;
(2)设直线 交 轴于点 ,点 是 轴正半轴上的一个动点,过点 作 轴交反比例函数 的图象于点 ,连接 , .若 ,求 的取值范围.
数学课外活动小组的同学在学习了完全平方公式之后,针对两个正数之和与这两个正数之积的算术平方根的两倍之间的关系进行了探究,请阅读以下探究过程并解决问题.
猜想发现
由 ; ; ; ; ; .
猜想:如果 , ,那么存在 (当且仅当 时等号成立).
猜想证明
,
①当且仅当 ,即 时, , ;
②当 ,即 时, , .
综合上述可得:若 , ,则 成立(当且仅当 时等号成立).
猜想运用
对于函数 ,当 取何值时,函数 的值最小?最小值是多少?
变式探究
对于函数 ,当 取何值时,函数 的值最小?最小值是多少?
拓展应用
疫情期间,为了解决疑似人员的临时隔离问题.高速公路检测站入口处,检测人员利用检测站的一面墙(墙的长度不限),用63米长的钢丝网围成了9间相同的长方形隔离房,如图.设每间离房的面积为 (米 .问:每间隔离房的长、宽各为多少时,可使每间隔离房的面积 最大?最大面积是多少?
如图,一次函数 的图象与 轴的正半轴交于点 ,与反比例函数 的图象交于 , 两点.以 为边作正方形 ,点 落在 轴的负半轴上,已知 的面积与 的面积之比为 .
(1)求一次函数 的表达式;
(2)求点 的坐标及 外接圆半径的长.
如图,在平面直角坐标系中,一次函数 和 的图象相交于点 ,反比例函数 的图象经过点 .
(1)求反比例函数的表达式;
(2)设一次函数 的图象与反比例函数 的图象的另一个交点为 ,连接 ,求 的面积.
设函数 , .
(1)当 时,函数 的最大值是 ,函数 的最小值是 ,求 和 的值.
(2)设 ,且 ,当 时, ;当 时, .圆圆说:“ 一定大于 ”.你认为圆圆的说法正确吗?为什么?
为了做好校园疫情防控工作,校医每天早上对全校办公室和教室进行药物喷洒消毒,她完成3间办公室和2间教室的药物喷洒要 ;完成2间办公室和1间教室的药物喷洒要 .
(1)校医完成一间办公室和一间教室的药物喷洒各要多少时间?
(2)消毒药物在一间教室内空气中的浓度 (单位: 与时间 (单位: 的函数关系如图所示:校医进行药物喷洒时 与 的函数关系式为 ,药物喷洒完成后 与 成反比例函数关系,两个函数图象的交点为 .当教室空气中的药物浓度不高于 时,对人体健康无危害,校医依次对一班至十一班教室(共11间)进行药物喷洒消毒,当她把最后一间教室药物喷洒完成后,一班学生能否进入教室?请通过计算说明.