如图,一次函数 y = k 1 x + b ( k 1 ≠ 0 ) 与反比例函数 y = k 2 x ( k 2 ≠ 0 ) 的图象交于点 A ( 2 , 3 ) , B ( n , - 1 ) .
(1)求反比例函数和一次函数的解析式;
(2)判断点 P ( - 2 , 1 ) 是否在一次函数 y = k 1 x + b 的图象上,并说明理由;
(3)写出不等式 k 1 x + b ⩾ k 2 x 的解集.
如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,O是AB上一点,以OA为半径的⊙O经过点D.(1)求证:BC是⊙O切线;(2)若BD=5,DC=3,求AC的长.
如图,点E是矩形ABCD中CD边上一点,△BCE沿BE折叠为△BFE,点F落在AD上.(1)求证:△ABF∽△DFE;(2)若sin∠DFE=,求tan∠EBC的值.
已知抛物线y=x2﹣2x﹣8.(1)试说明该抛物线与x轴一定有两个交点.(2)若该抛物线与x轴的两个交点分别为A、B(A在B的左边),且它的顶点为P,求△ABP的面积.
如图,在一次数学课外实践活动中,要求测教学楼的高度AB、小刚在D处用高1.5m的测角仪CD,测得教学楼顶端A的仰角为30°,然后向教学楼前进40m到达E,又测得教学楼顶端A的仰角为60°.求这幢教学楼的高度AB.
为了说明各种三角形之间的关系,小明画了如下结构图:请你采用类似的方式说明下述几个概念之间的关系:正方形、四边形、梯形、菱形、平行四边形、矩形.