如图,反比例函数 y = k x 的图象与一次函数 y = mx + n 的图象相交于 A ( a , - 1 ) , B ( - 1 , 3 ) 两点.
(1)求反比例函数和一次函数的解析式;
(2)设直线 AB 交 y 轴于点 C ,点 N ( t , 0 ) 是 x 轴正半轴上的一个动点,过点 N 作 NM ⊥ x 轴交反比例函数 y = k x 的图象于点 M ,连接 CN , OM .若 S 四边形 COMN > 3 ,求 t 的取值范围.
先化简,再求值: 求代数式的值.其中
化简(每小题5分,共10分) (1) (2)
画出数轴,把下列各组数分别在数轴上表示出来,并用“<”连接起来:,2, 0,,,
如图12,在△ABC中,AC=BC,∠B=30°,D是AC的中点,E是线段BC延长线上一动点,过点A作AF∥BE,与线段ED的延长线交于点F,连结AE、CF. (1)求证:AF=CE; (2)若CE=BC,试判断四边形AFCE是什么样的四边形,并证明你的结论; (3)若CE= BC,求证:EF⊥AC.
甲、乙两校参加区教育局举办的学生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图表.
(1)在图11.1中,“7分”所在扇形的圆心角等于°;将图11.2的统计图补充完整; (2)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好; (3)如果该教育局要组织8人的代表队参加市级团体赛,为便于管理,决定从这两所学校中的一所挑选参赛选手,请你分析,应选哪所学校?